

CdS INFN Padova - 2018/7/10 G.Collazuol

Array of Silicon Avalanche Pixels

Development of a vertically integrated CMOS position-sensitive detector for charged particles

The ASAP Collaboration

ASAP

P.S.Marrocchesi¹⁾ (Coordinatore Nazionale INFN)

P.Brogi¹⁾, C.Checchia²⁾, G.Collazuol²⁾, G.F.Dalla Betta³⁾,

A.Ficorella³, F.Morsani¹, M.Musacci⁴, L.Pancheri³, L.Ratti⁴,

A.Savoy-Navarro⁵⁾, L.Silvestrin^{2)...}

1) University of Siena & INFN Pisa

- 2) University of Padova & INFN Padova
- 3) University of Trento & TIFPA
- 4) University of Pavia & INFN Pavia
- 5) University Paris-Diderot/CNRS Paris

Overview

- latest results (APIX → ASAP) focussing on local group achievements
- perspectives 2019
 - 2nd chip characterizatoin + beta probe
 - 3^{rd} chip \rightarrow timing

APIX/ASAP particle detector concept

Innovative Silicon tracker

- 1) thin sensitive volumes (pixels)
- 2) large signals (enhanced S/N)

- reduced material budget
- reduced power consumption
- "simple" electronics \rightarrow digital readout
- high rate capability
- high timing resolution

Two Geiger-mode avalanche detectors in coincidence:

 $DCR = DCR_1 \times DCR_2 \times 2\Delta T$

 In-pixel coincidence: integrated electronics is needed: CMOS avalanche detectors

APIX/ASAP particle detector concept

Innovative Silicon tracker

- 1) thin sensitive volumes (pixels)
- 2) large signals (enhanced S/N)

- reduced material budget
- reduced power consumption
- "simple" electronics \rightarrow digital readout
- high rate capability
- high timing resolution

2-layer pixel cross section:

- Electronic readout on both layers
- Metal shielding from optical cross-talk
- Vertical interconnection by bump bonding

APIX pixel array (1st prototype chip)

- Sensor array of 16 rows x 48 SPADs
- Pixel size: 50 µm x 75 µm
- Total sensor dimensions: 1.2 x 2.4 mm²

 30μm
 35μm
 40μm
 43μm

 30μm
 35μm
 40μm
 43μm

 30μm
 35μm
 40μm
 45μm

Unshielded pixels with different active

Array partitioning:

- Two SPAD types: p+/nwell and pwell/n-iso
- Different SPAD active areas: 30 - 35 - 40 - 45 micron side
- Some unshielded structures for testing with light
- Coincidence between SPAD with the same size and with different sizes

DCR – vertically integrated assembly

Dark count rate lower than expected

Optical cross-talk

Emitter

Detector

(fixed)

(scan)

Crosstalk coefficient
 CR = DCR = DCR = 2AT + K - (DCR)

 $CR_{m} = DCR_{e} \cdot DCR_{d} \cdot 2\Delta T + \mathbf{K} \cdot (DCR_{e} + DCR_{d})$

Crosstalk map – Type 1, 25µm thickness

Optical cross-talk as expected \rightarrow O(%)

Pixel efficiency - high energy protons

Test Beam @ CERN – Sept 2016

 \rightarrow two vertically integrated assemblies exposed to 400GeV protons

- top/bottom chip alignment at level better than 3µm
 pixel efficiency ≥ geom Fill Factor → charge "diffusion"
 - → New Test Beam with hi-res tracker (2018 Sept.)

Pixel efficiency & Rad hardn. - 2MeV p

Test Beam @ AN microbeam (LNL) – Jan 2018

 \rightarrow single bottom chip exposed to 2MeV protons

2) beam geometry tuningw/ copper grid + PIXE tecnique

 \rightarrow measured beam size < 3μ m

3) fine alignment w/ markers on the sample chip (PIXE)

Note: PIXE needs relatively high intensity beam...

NOTE: PIXE \rightarrow chip structures

1) Optical alignment (microscope)

G.Collazuol - ASAP - 20180710

Pixel efficiency & Rad. hardness - 2MeV p

Test Beam @ AN (LNL) – Jan 2018

 \rightarrow single bottom chip exposed to 2MeV protons

 PIXE needs relatively high intensity beam...
 → unfortunately chips are damaged during 3rd aligment phase even at large (1mm) distance from marker !!!

Pixel efficiency & Rad. hardness - 2MeV p Test Beam @ AN (LNL) - Jan 2018

Monitoraggio Pixel Typ2 Riga 2 Colonna 32 - T280 Chip 4 10⁶ Fascio acceso per circa 500 secondi Fascio acceso per 40 secondi 2 minuti 10⁵ scansione 2 minuti sottomatr scansione ice 3x3 sottomatr ice 3x3 400 10⁴ 10³ rate aggiuntiγa → nuovo singolo difetto (DCR) rate aggiuntiva (on top of DCR) compatibile con 100Hz dei protoni 10² 100 200 300 400 600 700 800 900 Tempo [s]

• APIX beam rate (on top of DCR) \rightarrow OK

• new single defect setup after 10³ protons per pixel clearly seen

 \rightarrow efficiency difficult to measure (rate tradoff rad damage vs DCR)

Pixel efficiency & Rad. hardness - 2MeV p

Test Beam @ CN (LNL) – Jun 2017

Protoni con energia 5 MeV: neutroni da Be target (spettro tra 0.5 e 3 MeV) fluenza max raggiunta: $3 \times 10^{11} n_{eq}/cm^2$

Distribuzione DCR pre-irraggiamento e post-irraggiamento a diverse fluenze Per alti DCR c'è una saturazione a qualche MHz dovuta al tempo morto dei detector (> 100ns)

 ... Silicon devices with internal multiplication suffer enhanced radiation damage ... to be investigated further

Measurements with beta-source on a vertically integrated assembly

Depositi di Energia per particelle che danno coinc. Padre*Figlio

a) in bulk figlio $<dE> \sim 115 keV$ RMS_E~50keV

b) in zona attiva di figlio e padre < dE > ~ 320 eVRMS_E ~ 320 eV

> Risultati: rate misurato ~ 7Hz in agreement @ 10% con rate simulazione

Note:

- bkg sottratto
- source 39kBq

ASAP application low energy/small surface

→ Intraoperative imaging beta probe for radio guided surgery

 high density rigid-flex pcb designed at INFN Pd (thanks to F.Fabris and M.Nicoletto)

• chip to be bonded (INFN PD) and PCB connected to readout electronics (INFN-PD \rightarrow G.Rampazzo, M.Bettini and G.Viola)

Aiming at characterization in Fall 2018

ASAP new "large" chip (2nd prototype)

Da esperienza 1^{st} chip APIX \rightarrow nuovi chip (top/bottom) $\sim 5x5mm^2$ - disegnati da gruppi ASAP di TN e PV

- prodotti @Lfoundry in standard 150nm CMOS technology

Chips just arrived (in PV) \rightarrow thinning (15 $\mu m)$

 \rightarrow characterization within 1 year

Overall sensor dimensions: $6 \times 5 \text{ mm}^2$ ~4000pixels (75x75 µm² or 50x50 µm²) w/ enhanced Fill Factor (up to 80%)

Four sensors in arrays of SPAD:

large sensor

 \rightarrow high rate imaging applications

- 2) sensor with integrated counters → radio-probe applications
 - 3) reduced pitch sensor
 - \rightarrow higher resolution imaging

4) test structures

- \rightarrow active quenching
- \rightarrow fast timing
- \rightarrow radiation resistant pixels

Next chip (3rd prototype) focussing on → ultra-fast (ps) timing for imaging charged particles

ASAP - Padova

FTE

- G.Collazuol 15%
- C.Checchia 50% (Assegno J)
- L.Silvestrin 0% (al momento non associato)

Richieste PD preventivi 2019

- Missioni estere 2k€
 - \rightarrow test beams 2019
- Consumo 7k€
 - \rightarrow beta probe upgrade $\rightarrow 2^{nd}$ chip (5.5kE)
 - \rightarrow (completion) new high resolution silicon tracker (1.5kE)

Richieste PD servizi locali

- Serv. Elettronica: **1 m.p.** per disegno e realizzazione nuova interfaccia e beta probe
- Uff. Tecnico e Off. Meccanica: **0.5+0.5 m.p.** per disegno e realizzazione sistema per high resolution silicon tracker

Additional material

Summary APIX2

Strengths:

- Can be thinned to a few microns: low material budget
- Timing resolution
- Low power consumption

Weaknesses:

- Radiation tolerance
- Geometric efficiency: surface device guard ring and electronics

Opportunities:

 Progress in SPAD production and 3D integration technologies: many major foundries active

Threats:

- Cost and accessibility of 3D integration processes

APIX array prototype

- Process: LFOUNDRY 150nm CMOS
- 2 different chips: APIXC1 (8mm²) and APIXC2 (6mm²)
- Vertical interconnect: per-pixel coincidence detection
- Chip-to-chip stacking (micro bump bonding @ IZM)

Pixel layout

Single pixel

Array arrangement

Pixel array prototype

- 16 rows: total width 16x75um = 1.2mm
- 48 SPADs per row: total length 48x50 = 2.4mm

- 16 x 48 pixel array
- Pixel size: 50µm x 75µm
- Splittings in detector type and area

Pixels with different detector area (unshielded)

Bump bonding pad

Pixels with shielded detectors

SPADs in 150nm CMOS process

- Standard CMOS process no modifications
- Avalanche diodes in deep nwell: isolated from substrate

Type 1:

- Shallow step junction
- Active thickness ~ 1µm

Type2:

- Deep graded junction
- Active thickness ~ 1.5µm

Array partitioning

Array size: 48 x 16

SPAD active area sizes:

- A: 45um
- B: 40um
- C: 35um
- D: 30um

SPAD pairs size combinations (Chip1 - Chip2)

Sensor layout

- Array size: 48 x 16 pixels
- Array partitioning:
 - □ **Two SPAD types**: p+/nwell and p-well/n-iso
 - □ Different SPAD active areas: 30 35 40 45 micron side
 - $\hfill\square$ Some **unshielded structures** for testing with light
 - □ Coincidence between SPAD with same size and with different sizes

G.Collazuol - ASAP - 20180710

Layout detail: pixels with different SPAD areas

24

Status of the project APIX2

- APIX2 funded by CNS5 for 3 years \rightarrow end in 2017
- First submission: end 2014 to LFoundry (150nm) SPAD chip ("son") + SPAD and logic chip ("father")
 - \rightarrow received in end April 2015
 - \rightarrow very good single chips performances
 - \rightarrow thinning (20µm !!!) and vertical integration (µ-bump bonding) by IZM
 - \rightarrow received end March \rightarrow successful !!!
 - \rightarrow extensive characterization of bonded chips \rightarrow very good bonded chip perf.
 - \rightarrow test beam at CERN sept. 2016 \rightarrow efficiency with MIPS
- Second submission: May 2015 to XFAB 180nm CMOS HV (40V)

we are

→ good chips performances

- here
- development of a new vertically integrated detector prototype of "large area"
 - size 5x5mm² with different regions:
 - uniform area (3.6x3.6mm²) \rightarrow "large" detector prototype
 - smaller structures \rightarrow for testing:
 - active vs passive quenching, timing optimized spads, memories and counters
 - \rightarrow design completed \rightarrow submission JULY 2017
 - study of radiation tolerance of the device

(from the standpoint of both ionization and bulk damage)

- \rightarrow first irradiation tests (neutrons) \rightarrow JUNE 28-30 2017 @ CN (LNL)
- ... main milestones reached with success

Characterization @ SNRI 2016 – PD/LNL

- 1. pixels Dark Rate measurement \rightarrow breakdown voltage
 - Oscilloscope / scalers
- 2. Cross-talk measurement
 both horizontal (bottom chip) and vertical (Top-Bottom)
 Coincidence circuits (on-chip/external)
- 3. Timing resolution
 - pulsed laser (30ps, 375nm)
 - TAC (5ps) / Waveform digitizer (5GSs)
- 4. Afterpulsing
 - Waveform digitizer / TDC
- 5. absolute Photo-Detection Efficiency (unshielded cells)
 - pulsed laser (30ps, 375nm) / pulsed diodes
 - calibrated photo-diode
 - 1/r² method

6. Sensitivity to a and β sources - scalers

(5'. Optional) relative PDE

- halogen lamp
- monochromator

Breakdown voltage uniformity

Measurements on:

5 sample chips x 2 types x 196 devices per chip

- Very good uniformity on-chip (σ < 20mV)
- Large difference (1V) between different chips for type 1

G.Collazuol - ASAP 28 - 20180710

Dark count rate

- Cumulative distribution, combined measurements on 3 chips
- 600 devices for largest size, 72 for smaller ones
- Median DCR = 2.2kHz for largest cell size of both types

Dark count rate lower than expected

APIX-Padova took care of interface electronics used in all the measurements and characterizations

- 1. chip carrier board (2 versions)
- 2. basic chip test pcb
- 3. Interface and Control Board \rightarrow $\mu\text{-controller}$
- 4. additional interface board \rightarrow FPGA
- 5. compact and programmable bias voltage power supplies

Designed and built by

→ M.Bettini / G.Rampazzo / P.Zatti (servizio elettronica INFN)

APIX3 project: follow-up of APIX2

Several improvements to be tested exploiting very good cooperation with LFoundry + first application

- 1) improvement in SPAD design (E field engineering)
 - \rightarrow lower DCR
 - \rightarrow active/passive quenching
 - \rightarrow radiation hardness
- 2) thinning (10 μm !) and bonding inside LFoundry
 - \rightarrow lower costs & higher yield
- 3) Through Silicon Vias
 - \rightarrow peripheral (easy) \rightarrow sandwich at wafer level !
 - \rightarrow local (might be w/ thinning 10µm) \rightarrow multi-layers !!!
- 4) Electronics from 150nm to 110nm \rightarrow higher fill factor

5) Response studies and Radiation Hardness with micro-beams
6) First application → beta probe for radio-guided surgery

Bottom chip - Micrographs

Bottom chip - Micrographs

eference - Vbd extraction method

Counts [cps]

V_{BD} extraction from I-V curves: not possible

V_{BD} extracted from the dark count rate vs. voltage curve

L. Pancheri et al., Proc. IEEE ICMTS, 2014

eference - Horizontal cross-talk

eference - SPAD timing

Measured on 10-µm devices, with blue laser (470nm), 70ps FWHM

Type 1: 60ps FWHM

Type 2: 170ps FWHM

Chip characterization

N.B. Design not optimized for timing

Reference - SPAD PDE

Shallower junction: better NUV – Blue efficiency Wider depletion region: Better red-IR efficiency

L. Pancheri et al., J. Selected Topics in Quantum Electron, 2015