Sviluppo di un fotomoltiplicatore a valanga basato su giunzione nanotubi di carbonio/Si

SCAPho-Silicon Carbon Avalance Photodetector

Sezione INFN Roma 2

Dott. Matteo Salvato (responsabile nazionale) Prof.ssa Paola Castrucci Prof. Maurizio De Crescenzi Dott. Aldo Morselli Prof.ssa Roberta Sparvoli

Sezione INFN di Napoli GC Salerno

Prof. Carmine Attanasio (responsabile locale) Dott.ssa Carla Cirillo Dott. Guerino Avallone

Collaborations

Fondazione Bruno Kessler Trento-Italy ISM-CNR Frascati-Italy

Photodetectors

p-n semiconducting or metal Schottky junction

1-Low-cost Rapid Room-temperature process Versatile deposition method Scalable tecnique Highly reproducible SWCNT random networks

Aqueous suspension of SWCNTS and anionic surfactant (SDS)

- Well dispersed suspension (ultrasonication and ultracentrifugation)
- Vacuum filtration process on cellulose filter
- Dry-transfer printing deposition method

Realization and properties of CNT films

metallic Non metallic

2- SWCNT thin films are conductive and semitransparent

Optical transmittance and electrical conductivity are two competing parameters both depending on the film thickness and the metallic CNT concentration

The SWCNT/n-Si device

Two possible configurations for two and three teminal measurements

$$\mathfrak{D} = \sqrt{\frac{A}{2eI_0}} \mathfrak{R}$$

The Detectivity measures the ability of a PD to detect small signals

Three terminals vs. two terminals configuration using Pulsed laser 40 fs, 31 pJ-1µJ

Our photodetector vs. not polarized commercial APD

	Active	Responsivity	Breakdown	Dark	Capacitance	Rise	Spectral	Gain
	area		voltage	current		time	range	
								$V > V_B$
								D
Hamamatsu	0.8 mm ²	0.5 A/W	200 V	0.5 nA	5 pF	1.5 ns	300 nm-	105
Si APD							1000 nm	
S12053								
Osi	0.2 mm ²	0.45 A/W	15 V	0.06 nA	1.8 pF	0.8 ns	400 nm-	
Optoelectronics							1000 nm	
HR020 series								
Our SWCNT/Si	9 mm²	1.2 A/W	20 V	<1 nA	5 nF	3-5 ns	300 nm-	Not
detectors							1000 nm	meas.

SWCNT junctions as candidates for Avalance PhotoDetectors (APD) and possibly for Multi Pixel Photo Counters (MPPC) for single photon detection

An APD works at a reverse voltage just above the break down. The photon absorption cause a huge increase of the reverse current

Improvement in the breakdown region is strongly demanded

Hamamatsu APD

New designed FBK substrates to improve the junction quality through a better contact of the SWCNT film with the Si substrate

Parameters of interest:

In dark conditions Voltage breakdown (~30 V), dark current (<1 nA), reverse voltage characteristics as a function of temperature and magnetic field. Schottky or p-n junction

Under light Quantum efficiency, responsivity, detectivity, response time, gain and their dependence on the temperature

SCAPho Silicon Carbon Avalance Photodetector

2 years.

Available facilities

INFN Roma2

-SWCNT film fabrication facilities

-Monocromator

-Lamp

-Current/voltage power supply

-Visible wavelengths Femtosecond laser

source

INFN Salerno

-Low temperature transport measurement facilities

-Cryostat with 9 T superconducting magnet

Workplan and financial support required

•	•••		
Description	Final date of the action	Equipment	Costs (euro)
New FBK substrates.Electrical and magneticcharacterization of the SWCNT thin films.SWCNT film deposition on FBK substrates; junctioncharacterization vs. temperature.Arrangement of existent	30-06-2019 31-12-2019	Picoammeter; FBK substrates; chemicals Optical fibers,	30000
facility for electrooptical measurements at different temperature.		adaptors, cryogenic supplies	
Electro-optical measurements under light. Quantum efficiency, responsivity, detectivity vs. Temperature. Time response measurements. Optimization of the fabrication parameters.	30-06-2020	Refrigeration liquids, cryogenic feedthrought, mirrors, filters, optical spares	15000
APD electrical circuit; avalance photodetector response; gain measurement vs. light power, temperature, wavelength.	31-12-2020	Electronics, refrigeration liquids.	