

The HERD space mission Paolo W. Cattaneo INFN Pavia On behalf of the HERD Pavia group

G

S

What we have...

p and He spectral hardenings

G

E.S. Seo/Astroparticle Physics 39-40 (2012) 76-87

Fig. 11. The all-particle spectrum (black solid curve) obtained by summing up CREAM elemental spectra from p to Fe (filled symbols) is compared with previous measurements (open symbols): ATIC-1 [35], black squares; JACEE, blue downward triangles; RUNJOB, black crosses; Ichimura et al. [71], green upward triangles; SOKOL [72], pink circles. The gray shaded area indicates ground based indirect measurements. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The DAMPE (e⁺+e⁻) spectrum

Space/balloon vs Ground based

Fe Breal

26 X 240

10⁴

10⁵

Primary Energy, E [GeV]

 10^{7}

Proton Break 240 GeV

 10^{2}

dN/dE [GeV^{1.6} m⁻² sr⁻¹ s⁻¹]

He Break

2 X 240

= 480 GeV

Direct measurements

Requirements:

Calorimetry vs Spectrometry Large acceptances <20% resolutions

Output:

Fully explore the sub-PeV region

Limitations:

Surface/weight limited Hard to reach the all-particle knee Need high technology

Indirect measurements

Requirements:

Multi-Hybrid approach Operate at (not too) high altitude Large surfaces / samplings

Output: Reach the highest energies

Limitations:

Poor mass resolution Intrinsically limited by systematics Large model dependence

HERD

High Energy cosmic-Radiation Detection

- HERD: a cosmic ray experiment onboard the China's Space Station (CSS)
- Science:
 - Precise cosmic ray spectra and composition up to the "knee"
 - Gamma-ray astronomy and transient studies e.m. follow
 - Electrons spectra (and anisotropy) up to tens of TeV
 - Indirect dark matter searches with high sensitivity

The HERD payload

Large acceptance, deep, 3D calorimeter,

equipped with silicon tracker (STK) and plastic scintillators (PSD) for primary identification, onboard CSS for a long duration mission.

One order of magnitude jump in exposure wrt current generation CR experiment: 15 m² sr yr

STK(SSD+W),five sides Charge Trajectory Gamma tracking

PSD, five sides low energy Gamma Id Charge

3D CALO e/G/CR energy e/p discrimination

HERD specifications

Item	Value
Energy range (e/γ)	10 GeV-100 TeV(e); 0.5 GeV-100 TeV (γ)
Energy range (CR)	30 GeV — 3 PeV
Angle resolution	0.1 deg.@10 GeV
Charge measurement resolution	0.15-0.2 c.u
Energy resolution (e)	1-2%@200 GeV
Energy resolution (p)	20-30%@100 GeV – PeV
e/p separation	~10-6
G.F. (e)	>3 m ² sr@200 GeV
G.F. (p)	>2 m ² sr@100 TeV
Pointing	Zenith
Field of View	+/-70 deg (targeting +/-90 deg)
Measur. accuracy of attitude	<0.1 deg
Measur. accuracy of angular speed	<0.005 deg/s
Lifetime	>10 years

HERD: some performance plots proton "early" p and He HERD proton helium helium E^{3.00} × -10 exposure=12.5 m² sr yr (Hoerandel flux) Proton and Helium flux Pamel Precise exposure=12.5 m² sr yr (Hoerandel flux) CREAM measurement of the AMS-02 10³ Reaching exposure=12.5 m² sr yr (Modified Hoerandel flux) "discrepant" ATIC the knee(s) Hoerandel (E = Z*4.51 PeV) hardening Modified Hoerandel (E = Z*1.0 PeV) 2 5.5 4.5 6.5 Log(E(GeV/n)) Log(E(GeV/n)) HERD 5yrs, photon map, $E_{\gamma} >$ **All-electron** 1GeV (deg)

 $E^{2.70} \times \frac{dN}{dEdAdtd\Omega}$ ((GeV^{1.70}/n)m⁻²s⁻¹sr⁻¹

10⁴

10²

10

-90

6009

8007

10004

Galactic Longitude (deg)

Counts/pixel

4012

17

2014

The HERD Calorimeter

	itom	Value	Noto
	item	value	NOLE
	Type of crystal	LYSO	
	Nuclear Interaction Length	3 (55 X ₀)	~ 21 LYSO crystals
	Number of crystals	~7500	
	Crystal dimension	3cm*3cm*3cm	
	Fiber readout	3 WLSF/crystal	Low range, high range & trigger
STK and Possible readout part of crystals w PhotoDiodes (Calocube) calibration extended dyna range		Possible readout of part of crystals with PhotoDiodes (Calocube) for calibration and extended dynamic range	

Optimizing scint. / shape /readout

Photodiodes

Active area
Sp.respons
C _J (pF)

	VTH2090	VTP9412H
Active area (mm ²)	84.6	1.6
Sp.response range/peak (nm)	400÷1100 / 960	400÷1150 / 925
C _J (pF)	70 @30V	6 @15V
5		

LYSO size: 3cm*3cm*3cm Detector dimension: 21 LYSO number: ~7500 Calo weight: ~ 1500 kg

The HERD Si-Tracker

- CR/e trajectory
- Gamma ray conversion & tracking
- Complementary charge measurement

Item	Value
Coverage ratio	>80%
Z measurement	Z = 1 - 20 (26); 0.1-0.15 c.u
Angle resolution	0.1 deg.@10 GeV
Layers of SSD	6 X/Y (top);3/6 X/Y (Lateral)
Active converter	1 R.L.
Dead time	<2 ms
Working mode	External trigger
Eff. Area (top)	~133 cm*133 cm
Eff. Area (lateral)	~114 cm*66.5 cm
Channels	~240,000/368,000

Based on the experience with AGILE, AMS-02,FERMI, DAMPE missions

TIC: Tracker In Calorimeter

A possible TIC design is under study to:

- Optimize photon tagging and direction reconstruction
- Give multiple charge measurements (CR identification)
- Maximize calorimeter mass, i.e acceptance for the CR studies

The HERD PSD plastic scintillator detector

- Low energy gamma identification
- CR identification by Charge Measurement
- Design
 - 1 X/Y layer on top and 4 lateral sides
 - X layer for LE photon trigger
 - X & Y layers for Z measurement and e/gamma discrimination
 - 1 X layer on bottom side
 - SiPM + IDE3380 ASIC
 - Low & high range to cover Z=1-26 and backsplash effects
 - Redundancy SiPMs

Alternative approach: tile geometry

Bars vs Tiles layout resulting from the optimization of efficiency / mechanics / no.

The HERD PSD plastic scintillator detector

At each end of PS, 4 redundant SiPMs attached to readout as 2 low range signals and 2 high range signals

SciFi Tracker with SiPM readout

HERD mat: 97.80 mm width + 200 μ m inter-mat gap to match for 3 SiPM

SciFi Tracker with SiPM readout

Preliminary results on test beams give resolutions at the level of 55-65 μ m

oth HERD Workshop 27.03.201

The HERD Collaboration

• China

CSU, IHEP, XIOPM, PMO, USTC, IGG, XAO, NAOC, TSU, GXU, PKU, NJU, YNU, NBU, SYSU, University of Hong Kong (HKU), National Central University (NCU)

Italy

INFN Perugia, University & INFN Firenze, University & INFN Bari, University & INFN Pisa, University of Salento and INFN Lecce, University & INFN Napoli, University & INFN Pavia, Gran Sasso Science Institute

- Switzerland: University of Geneva
- Spain: CIEMA

International collaboration (120+ colleagues)

More Stuff

Sensitivity for gamma ray line by different experiments

PAMELA: 2006-2016 CALET: 2015-2020; AMS: 2011-2024; DAMPE: 2015-2020; Fermi: 2008-2018; HERD: 1 year

Iron nucleon and super-iron elements

Gamma-ray sky survey

Payload design - CALO

- CALOrimeter (3 N.I.L. and 55 R.L.)
 - A 3-d crystal array (~7500 LYSO)
 - IsCMOS camera
 - Trigger sub-system
 - Novel readout method
 - WLSF + IsCMOS
 - Linearity of LYSO+WLSF is verified.
 - Energy measurement of WLSF

Alternative approach: Photo diode readout

CALO – ISCMOS SUDsystem

- IsCMOS to collect WLSF photons
 - Faster: Global shutter; ROI readout
 - Lower noise
- Accurate energy measurement
 - 1 fiber ~ 20*20 pixels
 - Saturation effect to increase DR

TRD payload

- Energy calibration of TeV protons and other nuclei
- A complete calibration in 2-3 months in-orbit operation

response to [2.25, 2.5] TeV protons

2 months simulated observation,
~6300cm² TRD.

Higner energies and secondaries

and HERD

33

 10^{3}

 10^{2}

Ekn [GeV/n]

10