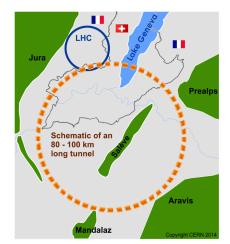
# Full simulation of the FCC-ee IDEA detector with FCCSW

Niloufar Alipour Tehrani

**RD-FA** Collaboration Meeting


CERN 6 July 2018





# FCC Software: FCCSW

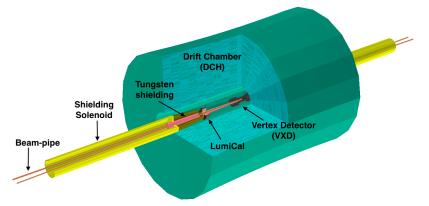
- Common software for all FCC experiments
  - ▶ ee, hh & eh
- Detector and physics studies
  - Fast & full simulations
  - One software stack from event generation to physics analysis
- Collaborative approach
  - LHC: Gaudi
  - CLIC: DD4hep
  - New solutions  $\Rightarrow$  where needed



- The IDEA concept is under development within FCCSW
  - Impact of beam-induced background is under study

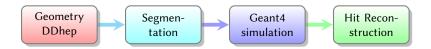
#### FCCSW

- Webpage and tutorials: http://fccsw.web.cern.ch/fccsw
- GitHub link for the code:


https://github.com/HEP-FCC/FCCSW

| Search or ju     | mp to                        | Pull requests Issue                                                            | es Marketplace Explore   | 🖨 + - 🔉                                   |
|------------------|------------------------------|--------------------------------------------------------------------------------|--------------------------|-------------------------------------------|
| HEP-FCC / FC     | CSW                          |                                                                                | O Unwatch                | <ul> <li>✓ 21 ★ Star 7 Fork 84</li> </ul> |
| ↔ Code ① Is      | sues 10 🕴 Pull requ          | uests 18 III Projects 0                                                        | III Insights             |                                           |
| FCC software, co | mmon to FCC-hh, -ee,         | and -eh. http://fccsw.web.ce                                                   | ern.ch                   |                                           |
| · 2,426          | commits                      | ₽ <b>3</b> branches                                                            | S 8 releases             | 27 contributors                           |
| Branch: master - | New pull request             |                                                                                | Create new file Upload   | files Find file Clone or download -       |
| vvolki Merge pu  | II request #303 from Javier0 | CVilla/dd4hep-v01.05                                                           |                          | Latest commit ba07b2d on May 16           |
| i .github        | Fixing typos in              | contribution guide.                                                            |                          | a year ago                                |
| Detector         | Merge branch                 | 'master' into dd4hep-v01.05                                                    |                          | a month ago                               |
| Examples         | Merge branch                 | 'master' into dd4hep-v01.05                                                    |                          | a month ago                               |
| FWCore           | Add option to                | allow empty signal collection for t                                            | the pileup overlay       | 4 months ago                              |
| Generation       | Merge branch                 | 'master' of https://github.com/HE                                              | EP-FCC/FCCSW into test-c | 3 months ago                              |
| Reconstruction   | Merge branch                 | 'master' into dd4hep-v01.05                                                    |                          | 2 months ago                              |
| 🖿 Sim            | Merge branch                 | Merge branch 'master' of https://github.com/HEP-FCC/FCCSW into test-c 3 months |                          |                                           |
| Test             | Merge branch                 | 'master' into dd4hep-v01.05                                                    |                          | a month ago                               |
| Visualization    | Namespace cl                 | nanges and fixes for LCG_92 com                                                | patibility               | 5 months ago                              |
| in cmake         | Add run bash                 | script to install                                                              |                          | a year ago                                |
| doc              | Merge branch                 | 'master' into merge_collections                                                |                          | 8 months ago                              |

# The IDEA interaction region in FCCSW

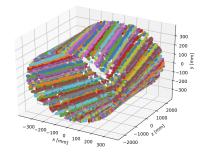

- Beam-pipe, beam instrumentations and the vertex detector are taken from the CLD concept
  - Temporary design of VXD for the IDEA detector  $\Rightarrow$  ultimate goal: MAPS
- The DCH implemented from scratch in FCCSW
- Missing elements
  - Alice-like ITS, solenoid magnet, dual-readout calorimeter, instrumented return yoke

Visualisation with FCCSW



# FCCSW simulation chain

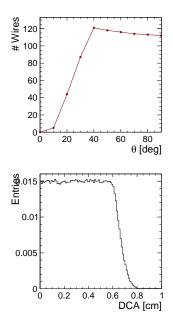
- 1. Detector geometry description with DD4hep
- 2. Segmentation of the sensitive areas:
  - Speed up the simulation
  - Example: information on the position of the sense wires instead of placing physical volumes
- 3. Geant4 simulation:
  - Calculate the E<sub>dep</sub> in sensitive volumes
- 4. Hit reconstruction:
  - Combination of individual hit calculations from (3)
  - Calculation of the drift, diffusion and signal in the wire




# The drift chamber (DCH)

#### Parameters of the DCH

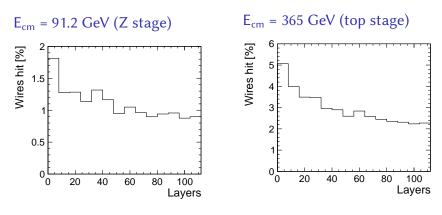
| Length                                    | 4500 mm |
|-------------------------------------------|---------|
| Inner radius                              | 345 mm  |
| Outer radius                              | 2000 mm |
| Number of sensitive wires                 | 56448   |
| Single cell resolution (transverse plane) | 0.1 mm  |


The segmentation concept is used to access the information on the positions of the wire



# Coverage of the drift chamber

- The number of wires as a function of  $\theta$
- The coverage in the forward region will be improved by the placement of disks

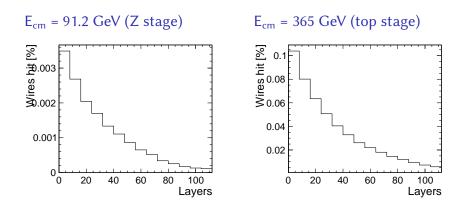

- The distance of the closest approach (DCA)
- Provides the information on the drift time
- Maximum drift time (corresponding to the corners): 400 ns



### Beam-induced backgrounds at FCC-ee

- ► Incoherent e<sup>+</sup>e<sup>-</sup> pairs
  - Produced in  $\gamma\gamma$  interactions from beamstrahlung
  - Forward region
- ▶  $\gamma\gamma \rightarrow$  hadrons
  - Possibly results in jets in the detector
- Synchrotron radiation (SR)
  - Photons from the last bending magnet

### Incoherent $e^+e^-$ pairs

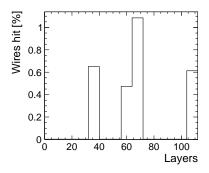



Average occupancy: 1.1%

Average occupancy: 2.9%

The effect of this background does not pose problem for the track reconstruction.

 $\gamma\gamma \rightarrow \mathsf{hadrons}$ 




- Average occupancy: 0.001%
  - Negligible effect

Average occupancy: 0.035%

#### Synchrotron radiation: $E_{cm} = 365 \text{ GeV}$

- The shielding stops most of the SR photons.
- Average occupancy: 0.2%
- Negligible effect



### Summary: background occupancy in DCH

- The overall effect of the backgrounds on the DCH remains small
- $e^+e^-$  pair background is the largest source of background

| Background                              | Average occupancy           |                            |  |
|-----------------------------------------|-----------------------------|----------------------------|--|
|                                         | $E_{cm} = 91.2 \text{ GeV}$ | $E_{cm} = 365 \text{ GeV}$ |  |
| $e^+e^-$ pair background                | 1.1%                        | 2.9%                       |  |
| $\gamma\gamma  ightarrow 	ext{hadrons}$ | 0.001%                      | 0.035%                     |  |
| Synchrotron radiation                   | -                           | 0.2%                       |  |

#### Conclusions

- The FCCSW is ready for the full simulation of the IDEA detector
- Background estimations in full simulations have been performed for the drift chamber
  - Low effect
- Contributions are more than welcome
  - $\Rightarrow$  Input for tracking
  - $\Rightarrow$  Dual-readout calorimeter, ...

# Thank you for your attention!