IDEA Drift Camber stato e preventivi 2019

F. Grancagnolo INFN - Lecce

Milano, 5 luglio 2018

SOMMARIO

\square Consuntivo attività 2017-2018
\square Attività prevista 2019
\square Richieste 2019
\square Attività prevista 2020-2021

Consuntivo attività 2017-2018

Talks e posters
\square Organizzazione WG11 (Detector Design) Meetings at CERN
\square Simulazione e studio delle performance della DCH
\square Studi su algoritmi di tracciamento
Beam test del prototipo di DCH al PSI (Sept. 2017)
\square Stima occupancy da Incoherent Pair production in FCCee
\square Stima data transfer da DCH
\square Stesura CDR di CEPC e di FCCee
\square Studi su fili di carbonio rivestiti
\square Preparazione beam test al CERN (slice test ad H8)

Talks e Posters 2017-2018

1. F. Grancagnolo, A drift chamber option for CEPC - IAS HEP, Hong Kong January 2017
2. F. Grancagnolo, IDEA tracking highlights - CEPC Workshop, Wuhan April 2017
3. F. Grancagnolo, "Full" Simulation of the IDEA Drift Chamber at FCC-ee - FCC/WG11 CERN May 2017
4. G. Tassielli, IDEA tracking simulation status and future plans - FCC/WG11 CERN June 2017
5. G. Tassielli, Update on the integration of the simulation packages of the IDEA detector - FCC/WG11 CERN July 2017
6.

G. Tassielli, Very preliminary results from a beam test of a drift chamber prototype - FCC/WG11 CERN October 2017
F. Grancagnolo, An ultra-light drift chamber with particle identification capabilities - International Workshop on High Energy CEPC, Beijing

November 2017
8. M. Dam, Tracker resolution studies - FCC/WG11 CERN November 2017
9. F. Grancagnolo, Drift chamber tracker - FCC/WG11 CERN January 2018
10. G. Tassielli, IDEA drift chamber - FCC/WG11 CERN March 2018
11. N. Alipour Tehrani, Beam background impact in the IDEA drift chamber - FCC week, Amsterdam April 2018
12. N. Alipour Tehrani, Simulation of the drift chamber for the FCCee IDEA detector concept within FCCSW - FCC week, Amsterdam April 2018
13. G. Tassielli, IDEA drift chamber - FCC week, Amsterdam April 2018
G. Chiarello et al., Application of the cluster counting and timing techniques to improve the impact parameter estimate of the drift chamber, Poster - FCC week, Amsterdam April 2018
15. G. Chiarello et al., The automatic system for the construction of drift chambers for modern high energy physics experiments, Poster - FCC week, Amsterdam April 2018
16. G. Chiarello et al., Improving spatial and PID performance of the high transparency Drift Chamber by using the Cluster Counting and Timing techniques, Poster, Pisa meeting on advanced detectors, May 2018
17. F. Grancagnolo, State-of-the-art of drift chambers, Super c-tau factory workshop, BINP Novosibirsk, May 2018
18. F. Grancagnolo, The IDEA drift chamber: the occupancy "saga" and other considerations - FCC/WG11 June 2018

Simulazione e performance

DCH Performance: Analytical calculations (F\&)

Particle Separation ($\mathrm{dE} / \mathrm{dx}$ vs $\mathrm{dN} / \mathrm{dx}$)

Simulazione e performance

IDEA integrated tracking simulation (Tasselli, Dam, Inaloon)

Algoritmi di tracciamento

tracking strategy (innato, Tassieli)

- constructing of track seeds
- adding hits by following seed through detector layers
- improving seed with Kalman filter techniques
seeding from 2 pairs of hits (each pair on same layer) pointing at the origin

seeding from 3 hits in different layers with origin constraint
tracking efficiency (no longitudinal info)

using charge division and time difference $\sigma_{z} \approx 3 \mathrm{~cm}$

beam test PSI - Settembre 2017

- cluster timing for spatial resolution (impact parameter bias)
- cluster counting for particle identification

beam test PSI - Settembre 2017

Consideration about occupancy

o. In the case of 20 ns inter-bunch crossing time (at 91 GeV) and 400 ns maximum drift time, assuming that the hits are all from ionisation track segments and not from isolated Compton electrons from photons, it would be straightforward to integrate the occupancy over 20 BX .

- However,
- hits associated to $B X_{i}$ and $B X_{j}$ are separated in time and will not contribute to the occupancy if ($\mathrm{i}-\mathrm{j}$) $\times 20 \mathrm{~ns} \geq \delta \mathrm{t}_{\mathrm{cl}}$ (average cluster separation time).
- assuming conservatively $\boldsymbol{\delta}_{\mathrm{cl}} \approx 100 \mathrm{~ns}$, the occupancy must be integrated over $\mathbf{4} \mathrm{BX}$ at most.

Data Transfer: Example

Running conditions

D.C. operating conditions

- 91 GeV c.m. energy
- 200 KHz trigger rate
- 100 KHz Z decays
- $30 \mathrm{KHz} \mathrm{Y} \rightarrow$ hadrons
- 50 KHz Bhabha
- 20 KHz beam backgrounds
- drift cells: 56,000 , layers: 112
- max drift time ($\approx 1 \mathrm{~cm}$): 400 ns
- cluster density: 20/cm
- gas gain: 6×10^{5}
- single e^{-}p.h.: 6 mV
- r.m.s. electronics noise: 1 mV
- e^{-}threshold: $\mathbf{2 ~ m V}$; rise time $1 \mathbf{n s}$
- signal digitization:

12 bits at 2×10^{9} bytes/s

Traditional data transfer

Z decays:

10^{5} events/s $\times 20$ tracks/event $\times 130$ cells/track $\times 4 \times 10^{-7} \mathrm{~s} \times 2 \times 10^{9}$ bytes/cell/s $\cong 200 \mathrm{~Gb} / \mathrm{s}$ yy \rightarrow hadrons:
3×10^{4} events/s $\times 10$ tracks/event $\times 130$ cells/track $\times 4 \times 10^{-7} \mathrm{~s} \times 2 \times 10^{9}$ bytes/cell/s $\cong 30 \mathrm{~Gb} / \mathrm{s}$
Bhabha:
5×10^{4} events/s $\times 2$ tracks/event $\times 0$ cells/track $\times 4 \times 10^{-7} \mathrm{~s} \times 2 \times 10^{9}$ bytes/cell/s $\cong 0 \mathrm{~Gb} / \mathrm{s}$ Beam noise (assume 2.5\% occupancy):
2×10^{4} events/s $\times 1.5 \times 10^{3}$ cells/event $\times 4 \times 10^{-7} \mathrm{~s} \times 2 \times 10^{9} \mathrm{bytes} / \mathrm{cell} / \mathrm{s} \cong 25 \mathrm{~Gb} / \mathrm{s}$ Isolated peaks (assume 2.5\% occupancy):
2×10^{5} events/s $\times 1.5 \times 10^{3}$ cells/event $\times 4 \times 10^{-7} \mathrm{~s} \times 2 \times 10^{9}$ bytes/cell/s $\cong 250 \mathrm{~Gb} / \mathrm{s}$

Transferring all digitized data (reading both ends of wires):

The solution

The solution consists in transferring, for each hit drift cell, instead of the full spectrum of the signal, only the minimal information relevant to the application of the cluster timing/counting techniques, i.e. the amplitude and the arrival time of each peak associated with each individual ionisation electron.

This is accomplished by using a FPGA for the real time analysis of the data generated by the drift chamber and successively digitized by an ADC.

A fast readout algorithm (CluTim) for identifying, in the digitized drift chamber signals, the individual ionization peaks and recording their time and amplitude has been developed as VHDL/Verilog code implemented on a Virtex 6 FPGA, which allows for a maximum input/output clock switching frequency of 710 MHz . The hardware setup includes also a 12-bit monolithic pipeline sampling ADC at conversion rates of up to 2.0 GSPS.

CluTim data transfer

Z decays:

10^{5} events/s $\times 20$ tracks/event $\times 130$ cells/track $\times 20$ peaks/cell $\times 2$ bytes/peak $\cong 10 \mathrm{~Gb} / \mathrm{s}$
yy \rightarrow hadrons:
3×10^{4} events/s $\times 10$ tracks/event $\times 130$ cells/track $\times 20$ peaks/cell $\times 2$ bytes/peak $\cong 1.6 \mathrm{~Gb} / \mathrm{s}$
Bhabha:
5×10^{4} events/s $\times 2$ tracks/event $\times 0$ cells/track $\times 20$ peaks/cell $\times 2$ bytes/peak $\cong 0 \mathrm{~Gb} / \mathrm{s}$ Beam noise (assume 2.5\% occupancy):
2×10^{4} events/s $\times 1.5 \times 10^{3}$ cells/event $\times 0$ peaks/cell $\times 2$ bytes/peak $\cong 0 \mathrm{~Gb} / \mathrm{s}$ Isolated peaks (assume 2.5\% occupancy):
2×10^{5} events/s $\times 1.5 \times 10^{3}$ cells/event $\times 0$ peaks/cell $\times 2$ bytes/peak $\cong 0 \mathrm{~Gb} / \mathrm{s}$

Transferring only time and amplitude of each electron peak (reading both ends of wires):

New wire materials

Electrostatic stability condition
$T=$ wire tension
$C=$ capacitance per unit length
$V_{0}=$ anode-cathode voltage
$L=$ wire length, $w=$ cell width

Assuming: $\quad C=10 \mathrm{pF} / \mathrm{m}, V_{0}=1500 \mathrm{~V}, L=4.5 \mathrm{~m}, w=1.0 \mathrm{~cm}$ $\boldsymbol{T}>0.40 \mathrm{~N}$

- $20 \mu \mathrm{~m}$ W sense wire (Y.S. $\approx 1200 \mathrm{MPa}$): $T_{\max }=0.38 \mathrm{~N}$
- $40 \mu \mathrm{~m}$ Al field wire (Y.S. $\approx 300 \mathrm{MPa}$): $T_{\max }=0.38 \mathrm{~N}$
=> shorten chamber (loss of acceptance) ("transverse chamber"?)
=> increase cell size (increase occupancy)
=> increase wire thickness (increase multiple scattering)
or,
$\Rightarrow>$ replace $40 \mu \mathrm{~m}$ Al with Titanium (Y.S. $\approx 550 \mathrm{MPa}$): $\boldsymbol{T}_{\text {max }}=0.70 \mathrm{~N}$
=> replace $20 \mu \mathrm{~m}$ W and $40 \mu \mathrm{~m} \mathrm{Al}$ with $35 \mu \mathrm{~m}$ Carbon monofilament

$$
(\mathrm{Y} . \mathrm{S} . \approx 860 \mathrm{MPa}): T_{\max }=0.83 \mathrm{~N}
$$

New wire materials

SPECIALTY MATERIALS, INC. Manufacturers of Boron and Scs silion Carticide Fibers and Boron Nanoooowde CARBON MONOFILAMENT

TYPICAL PROPERTIES
$0.00136+/-0.0001$ " ($34.5+/-2.5 \mu \mathrm{~m})$ $125 \mathrm{ksi}(0.86 \mathrm{GPa})$ $6 \mathrm{msi}(41.5 \mathrm{GPa})$

High-power impulse magnetron sputtering (HiPIMS)
physical vapor deposition of thin films based on magnetron sputter deposition (extremely high power densities of the order of $\mathrm{kW} / \mathrm{cm}^{2}$ in short pulses of tens of microseconds at low duty cycle <10\%)

Attività prevista nel 2019

\square Analisi dati del beam test ad H8
\square Full simulation della cluster deposition e della generazione dello spettro di segnale
\square Full simulation dei vari background per l'ottimizzazione della geometria e dei parametri operativi (gain, gas, HV)
\square Continuazione degli studi sugli algoritmi (globali?) di tracciamento
\square Costruzione di piccoli prototipi con fili di C (anodo e catodi)
\square Studi su gas non infiammabili
\square Individuazione componentistica per scheda ADC+FPGA
\square Analisi di eventi bench mark di fisica (HZ in muoni)

Richieste 2019

Anagrafica INFN

	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$
Carola ESPOSITO CORCIONE	30%	-
Francesco GRANCAGNOLO	30%	40%
Alfonso MAFFEZZOLI	20%	-
Marco PANAREO	10%	20%
Giovanni Francesco TASSIELLI	20%	30%
Giorgio ZAVARISE	$\mathbf{2 0 \%}$	-
totale	$\mathbf{1 . 3} \mathbf{f t e}$	$\mathbf{0 . 9}$ fte
officina meccanica	$\mathbf{2 ~ m . u . ~}$	$\mathbf{3} \mathbf{~ m . u . ~}$

Richieste 2019

Anagrafica INFN

	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$
Carola ESPOSITO CORCIONE	30%	-
Francesco GRANCAGNOLO	30%	40%
Alfonso MAFFEZZOLI	20%	-
Marco PANAREO	10%	20%
Giovanni Francesco TASSIELLI	20%	30%
Giorgio ZAVARISE	$\mathbf{2 0 \%}$	-
totale	$\mathbf{1 . 3} \mathbf{f t e}$	$\mathbf{0 . 9}$ fte
officina meccanica	$\mathbf{2 ~ m . u . ~}$	$\mathbf{3}$ m.u.

Nuove Collaborazioni

Sergey GRIBOV
 Fedor IGNATOV Ivan LOGASHENKO Alexander POPOV Alexander RUBAN

Budker Institute for Nuclear Physics Novosibirsk, Russia

+ for the H8 beam test:
Francesco Renga, Gianluigi Chiarello
Sapienza University, Rome, Italy master student (Mogens DAM)

Niels Bohr Inst., Copenhagen, Denmark master student + bachelor student

Salento University, Lecce, Italy
master student (Nicola De Filippis)
Bari University, Italy

Richieste 2019

Consumi

Missioni

Studi sui file

- filo di C (600 m)
- campioni di filo di Ti
- metalli per HiPIMS coating C and Ti wires

Scheda ADC + FPGA

- Analog Device AD9625-2.0EBZ or similar
- Xilinx Zynq-7000 SoC ZC706 Evaluation Kit
- cavi e connettori di collegamento

Costruzione piccoli prototipi

- meccanica tubi a drift con anodi di C
- meccanica cameretta con catodi di C e Ti
- componentistica gas ed elettronica

Studi su miscele di gas non infiammabili
. bombole e riduttori di pressione Metabolismi Metabolismi \quad 2.0 K€
5.0 K€ 2.0 K€
1.0 K€
2.0 K€
5.0 K€
$1.5 \mathrm{~K} €$ 2.5 K€ 1.0 K€
3.0 K $€$ $0.5 \mathrm{~K} €$ 1.5 K€ 1.0 K€ 2.0 K $€$ 2.0 K€

Riunioni RD FA

- 2 riunioni all'anno per 2 persone

Coordinamento FCCee-WG11

- riunioni mensili al CERN (6 riunioni) X.X K€

Altro

- Workshop CEPC (2×2 persone)
- FCCee weeks (2×2 persone)
- 2 viaggi a BINP (in attesa di agreement)
in attesa di definizione

Attività prevista nel 2020-2021

Disegno finale della camera in preparazione del TDR
\square Realizzazione scheda FPGA multicanale (16 canali?)
\square Prototipo "full length" (5 m)
\square Prototipo di camera "trasversa"
\square Beam test dei prototipi

TraPid chamber for JLIG

Cylindrical tracker:

Length $140 \mathrm{~cm}, R_{\text {in }} \sim 10 \mathrm{~cm} R_{\text {out }} \sim 90 \mathrm{~cm}$ $|n| \leq 0.7\left(52^{\circ} \leq \vartheta \leq 142^{\circ}\right)$
Solenoid field 3 Tesla 10x8 layers in 24 sectors average stereo angle 100 mrad average square cell size 1.0 cm 25,000 drift cells, 150,000 wires

Forward/Backward trackers:
hadrons:
$\mathrm{L}=120 \mathrm{~cm}, 120$ planes
$0.7 \leq \mathrm{n} \leq 3.5\left(3.6^{\circ} \leq \vartheta \leq 52^{\circ}\right)$

electrons:

$\mathrm{L}=80 \mathrm{~cm}, 80$ planes
$-0.7 \leq \eta \leq-3.2\left(142{ }^{\circ} \leq \boldsymbol{\vartheta} \leq 175.2^{\circ}\right)$
wires orientations $0^{\circ}, \pm 60^{\circ}$
square cell size 1.0 cm
128 drift cells, 1500 wires /plane
$15,360+10,240$ drift cells, 150,000 wires

Jefferson Lab Concept

TraPId chamber for JL=IC

PLANAR DRIFT CHAMBER

Back up

A few facts

Ideal case: drift tube
 Digitized signal ($1 \mathrm{GHz}, 2 \mathrm{GSa} / \mathrm{s}$)

Real case: drift cell

- $t_{i+1}-t_{i} \approx a$ few $n s$ at small $t_{i}, t_{i+1}-t_{i} \approx a$ few $\times 10 \mathrm{~ns}$ at large \mathbf{t}_{i}
- $t_{m a x}$ constant in ideal case (slightly depends on track angle in drift cell case)
- $\Delta t \leq t_{\text {max }}$, length of digitized signal, depends on impact parameter b ($\mathrm{t}_{\text {first }}$)
- N_{cl} depends only on Δt (or b, or $\mathrm{t}_{\text {first }}$) in cylindrical drift tube case
- \mathbf{N}_{cl} doesn't depend on b in square drift cell case, but only on the track angle
- $t_{\text {last }}$ constant in the ideal case $=>$ defines the trigger time $t_{0}=t_{\text {last }}-t_{\text {max }}$

A few facts (7 mm cell, faster gas)

A few facts (7 mm cell, faster gas)

Bunch Xing identification!

Track filtering!
Trigger capabilities?

Consideration about occupancy

- Average drift signal duration: $\langle\Delta t\rangle=\mathrm{t}_{\max } / 2$ (slightly larger given the time compression at small impact parameters) and $<\mathrm{t}_{\text {first }}>=\mathrm{t}_{0}+\mathrm{t}_{\text {max }} / 2$.
- A peak in the signal is identified as an electron if above threshold and with proper rise and fall times.
- A physical hit must contain at least a few electron peaks spaced by no more than the cluster separation time, $\delta \mathrm{t}_{\mathrm{cl}}$.
- An isolated electron peak is suppressed if its time differs from $t_{\text {first }}$ of the track hit by > $\delta \mathrm{t}_{\mathrm{cl}}$. Otherwise, it slightly affects the impact parameter and negligibly the particle identification.
- Two synchronous tracks overlapping in the same cell are indistinguishable, the promptest one defines the impact parameter.
- Two tracks delayed in time (i.e., belonging to different BX) can be separated if $t_{\text {last }}$ of the earlier one and $t_{\text {first }}$ of the later one differ by $>\delta \mathrm{t}_{\mathrm{cl}}$.

Consideration about occupancy

MEG2 DCH high occupancy

signal track
michel tracks

MEG2 DCH Performance

Example: CluTim algorithm

At the beginning of the signal processing procedure, a counter starts to count providing the timing information related to the signal under scrutiny.
The determination of a peak is done by relating the i -th sampled bin to a number n of preceding bins, where n is related to the rise times of the signal peak. Details of the algorithm can be found in next slide.

the input signal to the ADC, the peaks found, and the values of the auxiliary functions used and of their differences.
The memories are continuously filled as new peaks are found. When a trigger signal occurs at time t_{0}, the reading procedure is enabled and only the data relative to the found peaks in the $\left[t_{0} ; t_{0}+t_{\text {max }}\right.$] time interval are transferred to an external device

Example: CluTim algorithm

\section*{ | $\mathrm{s}_{0,1}$ | $\mathrm{~s}_{1,1}$ | $\mathrm{~s}_{2,1}$ | $\mathrm{~s}_{3,1}$ | $\mathrm{~s}_{4,1}$ | $\mathrm{~s}_{5,1}$ | $\mathrm{~s}_{6,1}$ | $\mathrm{~s}_{7,1}$ | $\mathrm{~s}_{8,1}$ | $\mathrm{~s}_{9,1}$ | $\mathrm{~s}_{10,1}$ | $\mathrm{~s}_{11,1}$ | $\mathrm{~s}_{12,1}$ | $\mathrm{~s}_{13,1}$ | $\mathrm{~s}_{14,1}$ | $\mathrm{~s}_{15,1,}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 }

$$
\begin{aligned}
& \text { Save for } X+1 \text { samples. } \\
& \text { sequence }
\end{aligned}
$$

	$\} \xrightarrow{\xrightarrow{\text { Fralse }} M_{1, X}=S_{1, X}} M_{1, X}=0$
$\left(\mathrm{Dl}_{A, X}>\sigma_{1} \wedge\left(\mathrm{D1}_{A X}-\mathrm{Dl}_{A,-\mathrm{X}}\right)>\sigma_{2}\right) \vee\left(\mathrm{D}_{\Lambda, X}>\sigma_{3} \wedge\left(\mathrm{D}_{A, X}-\mathrm{D}_{A, 2, \mathrm{x}}\right)>\sigma_{4}\right)$	$\left\{\begin{array}{l} \xrightarrow{\text { True }} \mathrm{M}_{A \mathrm{se}}=\mathrm{S}_{\mathrm{AXX}} \\ \mathrm{M}_{A X}=0 \end{array}\right.$

$M_{0 . X}$	$M_{1, X}$	$M_{2, X}$	$M_{3, X}$	$M_{4, X}$	$M_{5, X}$	$M_{6 . X}$	$M_{7, X}$	$M_{8, X}$	$M_{9 . X}$	$M_{1, X}$	$M_{1, X}$	$M_{12, X}$	$M_{13, X}$	$M_{14 . X}$	$M_{15, X}$

Sixteen samples $\mathrm{S}_{\mathrm{K}, \mathrm{X}}$ at 125 MHz to the FPGA input.

STEP 1: Of the Sixteen samples $S_{K, X}$, where K is the sample number among those available, and X is the time instant at which they are present, the functions $\mathrm{D} 1_{\mathrm{K}, \mathrm{X}} \in \mathrm{D} 2_{\mathrm{K}, \mathrm{X}}$ are calculated with use of the following equations
$\mathrm{D} 1_{\mathrm{k}, \mathrm{X}}=\left(\left(2^{*} \mathrm{~S}_{\mathrm{k}, \mathrm{x}}-\mathrm{S}_{\mathrm{K}-1, \mathrm{x}}-\mathrm{S}_{\mathrm{K}-2, \mathrm{x}}\right) / 16\right)^{*} 3$ $D 2_{k, X}=\left(\left(2^{*} S_{k, x}-S_{k-2, x}-S_{k-3, x}\right) / 16\right)^{*} 5$

Input signal to the ADC, peaks found, results of the functions D1, D2 and their differences
$D 2_{K, x}$ and the differences between $\mathrm{D} 1_{\mathrm{K}, \mathrm{X}}$ and D1 $1_{\mathrm{K}-1, \mathrm{X}}$ and between $\mathrm{D} 2_{\mathrm{K}, \mathrm{x}}$ and $\mathrm{D} 2_{\mathrm{K}-1 \mathrm{x}}$ are compared with the threshoids proportional to the level of noise present in the input signal.

STEP 3: In order to transfer the data in memory, the last step before
being sent to an external device is to check that there are no adjacent peaks

