

25 giugno 2018 / INFN-Sezione di Bari / Aula multimediale

Outline

- >> HL-LHC & Phase-2 upgrade of CMS experiment [issues, opportunities, solutions]
- Activities & responsibilities of the CMS-Bari group for the CMS Phase-2 upgrade [needs: manpower, technicians' work, newly dedicated temporary expertise (contracts); labs; schedules]
 - New Tracker construction & commissioning
 - Muon system upgrade : new GEM detectors (construction, installation & commissioning) - improved RPC (installation & commissioning)

The CERN Council approved (06/2016) the High Luminosity upgrade of the LHC (HL-LHC) [by year 2026]

During the 3rd Long Shutdown (LS3) [2024-26] the accelerator will be upgraded to enable:

Instantaneous Peak Luminosity $\mathcal{L}_{inst} \sim 5 \times 10^{34} cm^{-2} s^{-1}$ (or even $\mathcal{L}_{inst} \sim 7.5 \times 10^{34} cm^{-2} s^{-1}$) [stable] [ultimate]

- **EXAMPLE 15** HL-LHC is expected to run @ $\sqrt{s} = 14TeV$ with a 25ns bunch spacing (close to current values) but with :
 - an event pile-up rate 5 times higher than the current PU [stable: 140; ultimate: 200]
 - an integrated radiation dose (after 10 years of operation) 1 order of magnitude higher than originally foreseen for the current LHC detectors)

> The CERN Council approved (06/2016) the High Luminosity upgrade of the LHC (HL-LHC) [by year 2026]

During the 3rd Long Shutdown (LS3) [2024-26] the accelerator will be upgraded to enable:

Instantaneous Peak Luminosity $\mathcal{L}_{inst} \sim 5 \times 10^{34} cm^{-2} s^{-1}$ (or even $\mathcal{L}_{inst} \sim 7.5 \times 10^{34} cm^{-2} s^{-1}$) [stable] [ultimate]

- **EXAMPLE 15** HL-LHC is expected to run @ $\sqrt{s} = 14TeV$ with a 25ns bunch spacing (close to current values) but with :
 - an event pile-up rate 5 times higher than the current PU [stable: 140; ultimate: 200]
 - an integrated radiation dose (after 10 years of operation) 1 order of magnitude higher than originally foreseen for the current LHC detectors)

Scientific program :

- precision measurements of Higgs boson properties (couplings to fermions & vector bosons)
- studies of vector boson scattering
- searches of new heavy or exotic particles (BSM phenomena)
- measurements of rare decays & rare production modes of standard particles (precise SM)

An upgrade programme of the CMS experiment (*Phase-2*) is accompanying the HL-LHC upgrade ... in order to :

>> maintain the excellent detector performance while fully profiting from the HL-LHC capabilities

... in spite of ...

>> the challenging radiation levels & operating conditions

Radiation level increase

Higher PU rate

improved detector radiation hardness

- higher detector granularity (to reduce occupancy)

- increased bandwidth (to accomodate higher data rates)

 improved trigger capability (to keep acceptable the trigger rate while not compromising the physics potential)

200 collisions per bunch crossing considered while designing the upgraded detector

1e+07

1e+06

100000

10000

1000

100

10

5

Absorbed Dose, 3000 fb⁻¹ (in CMS cavern)

1000

Z [cm]

1200

800

700

600

500

400

300

200

[cm]

Most of first step is done :

Tracker, Barrel Calorimeter, Endcap Calorimeter, Muons Technical Design Reports (TDRs) have been approved by CERN Research Board (RB)

MIP precision Timing Detector (MTD) approved to go from Technical Proposal (TP) to TDR (*)
(to be submitted by 2019/Q1)

L1 trigger, HLT trigger & DAQ TDRs will follow (expected in 2020). LHCC reviews just ended and recommendations are being actively pursued.

Solution CMS is entering a new phase of engineering, prototyping & construction

(*) with Bari contribution

INFN commitments in the CMS Phase-2 Upgrade

>> INFN is going to participate to the following (upgraded) detectors

> We will briefly review the expected performances and features and the physics impact but you can refer to the TDRs and TPs for details.

For the first two subsystems we will go into the details of the INFN-Bari commitments and responsibilities in the hardware activities related to the CMS Phase-2 upgrade (numbers are taken from official document approved by referees and provided for CTS scrutiny)

Computing resources needed for the big data foreseen for CMS Phase-2 will not be discussed in this presentation!

Main CMS upgrade features – new MIP Timing Detector - I

The CMS Phase-2 upgraded detector will include a dedicated minimum ionizing particle (MIP) Timing Detector (MTD), expected to provide timing info with ~30ps resolution for <u>each</u> charged track.

The detector will consist in:

- a single layer providing timing in the barrel region surrounding the Tracker & inside its thermal screen (shared cooling) [LYSO crystals read out by silicon photomultipliers (SiPMs)]
- Inother single layer providing timing for each endcap region located in front of the neutron moderator of the endcap calorimeter [silicon low gain avalanche detectors (LGADs)]

Main CMS upgrade features – new MIP Timing Detector - II

Particle reconstruction & correct assignment to primary interaction vertex (of the hard interaction) in the presence of as many as 200 concurrent collisions per beam crossing (pileup events) represent an incredible challenge to the detectors

- Pileup mitigation tipically relies upon the removal from relevant quantities of charged tracks inconsistent with the vertex of interest (and of neutral deposits in the calorimeters with statistical inference techniques like PUPPI).
- Time tagging of MIPs produced in LHC collisions provides further discrimination of interaction vertices in the same 25*ns* bunch crossing beyond spatial tracking algorithms: time of arrival measurement can separate collisions very close in space but separated in time.
- **Simulation studies indicate that a time resolution of ~30***ps* (allowing to "slice" bunch crossing in "exposures" of 30ps) will offset the performance degradation due to PU recovering the track purity of vertices of current LHC conditions.

Main CMS upgrade features – new MIP Timing Detector - II

>> Particle reconstruction & correct assignment to primary interaction vertex (of the hard interaction) in the presence of as many as 200 concurrent collisions per beam crossing (pileup events) represent an incredible challenge to the detectors

- Pileup mitigation tipically relies upon the removal from relevant quantities of charged tracks inconsistent with the vertex of interest (and of neutral deposits in the calorimeters with statistical inference techniques like PUPPI).
- Time tagging of MIPs produced in LHC collisions provides further discrimination of interaction vertices in the same 25ns bunch crossing beyond spatial tracking algorithms: time of arrival measurement can separate collisions very close in space but separated in time.
- Simulation studies indicate that a time resolution of ~30ps (allowing to "slice" bunch crossing in "exposures" of 30ps) will offset the performance degradation due to PU recovering the track purity of vertices of current LHC conditions.

 Improvements: vertex identification, acceptance extension for isolated objects, improved missing transverse momentum resolution & pileup jet rate reduction.
 This will have significant impact on the physics program [precision H measurements (couplings to SM particles) & searches for SM rare & BSM decays].
 Precise track-time reconstruction can have incredible impact in searches for neutral long-lived particles (in SM extensions).

Main CMS upgrade features – ECAL barrel

The principal requirement of the ECAL barrel is to maintain Run-1 physics performance for photons & electrons at higher luminosity & pile-up of HL-LHC.

To accomplish this, the electronics must accommodate the new L1 trigger requirements on : latency ($3.2 \rightarrow 12 \mu s$) & rates ($100 \rightarrow 750 kHz$). It also must provide more precise timing resolution and help mitigate the increasing noise from photodetectors.

Loss of transparency in lead-tungstate crystals (not to be replaced) will be kept @ acceptable level.

All electronics FE cards & all off-detector electronics must be replaced to meet these requirements !

- The current system provides trigger primitives of 5-by-5 crystals and there is no tracking information. The upgrade will provide single crystal information to the L1 calorimeter trigger, thus better matching e.-m. showers to tracks and providing better isolation. The significantly reduced level of background will allow a precision study of the Higgs boson $(H \rightarrow \gamma \gamma)$.
- Precision time measurement will be an additional feature of the upgraded electronics, allowing an improved determination of the location of the production vertex for diphoton events: a precision of 30*ps* on the time arrival of photons produced by H boson is the target, thus allowing a constraint of 1*cm* on the vertex longitudinal position.

New Tracker for Phase-2 CMS

Main CMS upgrade features / new Tracker – I

> The entire Silicon Tracking System will be replaced !

The new Tracker (Inner Tracker (IT) based on silicon pixel modules

+ Outer Tracker (OT) made from silicon modules with strips and macro-pixel sensors)

will feature :

increased radiation hardness

- radiation tolerance must ensure fully efficiency up to $\mathcal{L}_{int} \sim 4500 f b^{-1}$
- without any intervention for OT; it will still be possible to replace IT modules (during shutdowns)

higher granularity & extended tracking acceptance

- channel occupancy kept below the per cent(mille) level in the IT(OT)
- improved 2-track separation [currently hit-merging in pixel detector for closeby tracks (energetic jets)]
- efficient tracking up to $\sim |\eta| = 4$

Main CMS upgrade features / new Tracker – II

robust pattern recognition

- optimized design for track finding under high PU conditions
- also aided by parallel computing solutions & application of ML/DL concepts (already ongoing also in Bari)

reduced material in the tracking volume

- lighter than the current Tracker having performance affected by the amount of material (that influences the performance of the calorimeters & of the overall event reconstruction)

>> compatibility with higher data rates (output trigger rate) & longer trigger latency

... and will provide ... tracking information to the L1 trigger (now available only at HLT) thus allowing to keep trigger rates at sustainable level: a part of the track reconstruction presently performed in the HLT will be anticipated to be used in L1 event selection

Upgraded Tracker performances

Few examples of foreseen performances (with full MC simulation):

CMS Phase-2 Upgrade @INFN-Bari

Legend:				-	2																	
X = interest in this item	_		5	tro	ju j			lies														
OT = interest in this item for the entire OT	fro	2	t t	ð	Ŭ,	5	_	t a			2											ase
TBPS = interest in this item for the TBPS	5	l is	S ک	lity	E I	ncti	불	sse	8	e	i.	are	are	der	te	Ę	E a	e a	les	gui	E	atab
TB25 = interest in this item for the TB25	Ϊţ	<u>À</u>	alit	n du	vice	po	pr	ę.	ania	pip	ata	- p	ftw	ų,	sÁs	syst	sÁs	syst	cab	sion	atic	р с
TEDD = interest in this item for the TEDD	na du	l Ing	ð	ng.	Ser	e D	-Pi	of	ech	Ea I		2 ha	s s	-act	gas	ety	j g	ver	ver	sim	stall	ctio
IT = interest in this item for the entire IT	١.	3	brid	Puo	to	npo	No	lon	Σ	ă	ptic	DAC	DAD	Ĕ	š	Saf	8	Po	Po	5	Ē	st
TBPX = interest in this item for the TBPX	Sens	ASI	Ŧ	Å Å	ete	ž	-	grat			0	-			-		- T			- T		Con
TFPX = interest in this item for the TFPX				L L				nte														Ĩ
TEPX = interest in this item for the TEPX				-	0			-														
INFN Sezione di Bari and Università di Bari, Bari, ITALY			TBPX TEPX			TBPS														от		
INFN Sezione di Catania and Università di Catania, Catania, ITALY			TBPS										от	x						от		
INFN Sezione di Firenze and Università di Firenze, Firenze, ITALY					TBPX TEPX	TBPX TEPX							π					x		π		
INFN Sezione di Genova and Università di Genova, Genova, ITALY					TBPS															от		
INFN Sezione di Milano-Bicocca and Università di Milano- Bicocca, Milano, ITALY													π							π		
INFN Sezione di Padova and Università di Padova, Padova, ITALY		п								x										π		
INFN Sezione di Pavia, Università di Pavia and Università di Bergamo, Pavia, ITALY		x	TBPX TEPX																	π		
INFN Sezione di Perugia and Università di Perugia, Perugia, ITALY	от					TBPS								x				от		от		
INFN Sezione di Pisa, Università di Pisa and Scuola Normale Superiore di Pisa, Pisa, ITALY	π			TBPX TEPX			TBPS	TBPS	тврх				от	x		x				от	π	
INFN Sezione di Torino, Università di Torino and Politecnico di Torino, Torino, ITALY		π					TBPX TEPX	TBPX TEPX	тврх				π							π	π	

INFN commitments in Tracker construction – overview - II

TRACKING SYSTEM	01	201	7	04	01	20	03	04	01	20	03	04	01	2	020		01	203	03	04	01	202	22		01	20	23 03	04	01 0	202	4 03 0		01	202	5		2
TIMELINE	-	•	TOR S	ubmiss	sion				-	-	-	-	-			-	-	-		-	-			-		-				_		+				-	
OUTER TRACKER												-	•	OT ED	R																	T		OT in	stallatio	in 🕈	
Construction De	sign							P	rototy	ping					P	re-pro	ductio	m				Pr	roducti	ion													
OT Sensors								SI	3•	S	4•					51.5	•					SI.6 •	•				S1.	7 •				T					
OT FE ASICs		FE2	•	FE.3	•			FE.4	•		1	ES 🔶	13	FE.8 4																							
OT MaPSA				MaPS	43 •						MaP	5A.4 •					MaPS	4.5 •			MaP	5A.6 🔶				MaPSA.	7.					Т					
OT Hybrids										HY.	3 HY 14						HY.15 .	•	H	11.17	•			HY	.19 🔶		~										
OT Modules								MO.1	•			MO	•		10.5 •	M	0.5 +	+1	0.7			M	• 8.0			M0.9	•		• MO.10	i.		T					
OT Structures										ME	3 🕈 1	E7 🔶	+	ME.8				ME.	٠					M	ES 🕈	•	Æŝ	•	ME.9			T					
OT BE Electronics					BE.1	•					BE.7	•	E	2.0	•=	EB			1	BE 9 4	•	BE3 4		BE N	•	BE	4.		BES	•	8E.11 4						
Integration														_												N	1.				N24	• 10	13 •	1	Commis	sionin	g
INNER TRACKER																		 пе 	DR													Т		_	IT in	stallati	ion 🔶
Construction De	sign											P	rotot	yping				Pr	e-prod	luctio	m	1			Prod	uction											
IT Sensors											512 •	6 3	sı •	(C \$	L4. �			5	15 🔶				£6.€			ାର	7.					T					
IT ROC		FE.3							F	E4 .							F	E5 +														Т					
IT Modules										MO.1	•						MO	2.				MO3	•		MO	4.	м	05 🔶	MO.6	•		Т					
IT FE Electronics											EL.1,1	6L4 +			ELS	•		B.2 4	•	.6		E	17.0				ELI	•				Т					
IT Structures																	ME	3 🔶				ME4 4	•				ME5	•	I								
IT BE Electronics									BE	5.					8E.6 •		E1 .		• BE.7			8	E2 +	+8	E.8	BE.	3.		+ BE.9	1	E4 +		BE.10	•			
Integration																											IN.	2.					N.I	•	(Commi	sioning
COOLING		0.2 •							c03	•			•	00.6	•	0.4					• 00	17					CO.8 4	•					• 01	9.0			
OTHER SYSTEMS																05.4	• 0	6.1 .							OS	5.		052	+ 05.	5					0.057		

Figure 19: Construction schedule for the Phase-2 Tracker Upgrade (from TDR). The columns correspond to different phases of the project: design (light yellow), prototyping (dark yellow), preproduction (dark green) production (light green), integration (dark salmon), and commissioning (light salmon). The codes indicate milestones described in the TDR.

INFN commitments in Tracker construction - IT

Figure 20: schematics structure of one side of the Inner Tracker with enlightened the modules in the inner rings (TEPX rings 1 and 2) and inner layers (TBPX layers 1 and 2) delivered by INFN

integration, test & delivery of 4-Layers Barrel Pixel (full TBPX)

integration, contribution to development & commissioning of IT common system (power backend, DAQ & safety systems)

> the DAQ system of IT is under development (having as starting point the test-setup of RD53A chip)

INFN-Bari will take care of the HDI Hybrids testing task :

Legend: X = interest in this item OT = interest in this item for the entire OT TBPS = interest in this item for the TBPS TB2S = interest in this item for the TB2S TEDD = interest in this item for the TEDD IT = interest in this item for the entire IT TBPX = interest in this item for the TBPX TFPX = interest in this item for the TFPX TEPX = interest in this item for the TEPX	Sensor Quality Control	ASICs Quality Control	FE Hybrid Quality Control	Bump bonding Quality Control	On-detector Service Electronics	Module production	Module burn-in	Integration of sub-assemblies	Mechanics	Beam pipe	Optical Data links	DAQ hardware	DAQ software	L1 track finder	Dry gas system	Safety system	Cooling system	Power system	Power cables	Commissioning	Installation	Construction database
INFN Sezione di Bari and Università di Bari, Bari, ITALY			TBPX TEPX			TBPS														от		
INFN Sezione di Catania and Università di Catania, Catania, ITALY			TBPS										от	x						от		
INFN Sezione di Firenze and Università di Firenze, Firenze, ITALY					TBPX TEPX	TBPX TEPX							π					x		π		
INFN Sezione di Genova and Università di Genova, Genova, ITALY					TBPS															от		
INFN Sezione di Milano-Bicocca and Università di Milano- Bicocca, Milano, ITALY													π							π		
INFN Sezione di Padova and Università di Padova, Padova, ITALY		π	****							x										π		
INFN Sezione di Pavia, Università di Pavia and Università di Bergamo, Pavia, ITALY		x	TBPX TEPX																	π		
INFN Sezione di Perugia and Università di Perugia, Perugia, ITALY	от		****			TBPS								x				от		от		
INFN Sezione di Pisa, Università di Pisa and Scuola Normale Superiore di Pisa, Pisa, ITALY	π			TBPX TEPX			TBPS	TBPS	тврх				от	x		x				от	π	
INFN Sezione di Torino, Università di Torino and Politecnico di Torino, Torino, ITALY		π					TBPX TEPX	TBPX TEPX	тврх				п							π	π	

> INFN-Bari will take care of the HDI Hybrids testing task :

Parts Qualification	Bar	re Module Assemb	iy	Bare Mod	ule Qualification		Module Construction		Module Burn-in		Module Integration
Silicon Sensors 1128	Sis	Sensors and RO Ch	ips	Bare Mod	ule Qualification						
Pisa	Bu	mpDeposition & F	ipChip		1128						
	Co	mpany	1128	Pisa			Module Assembly,				
Readout Chip 7000	-			1		-	wire bonding and				
Torino + Pavia & Padova	· L						Qualification 1128				
HDI Hybrids 1128							Firenze	1	Module burn-in and		
Bari & Pavia						-			Calibration 1128		Bpix Module Integratio
									Torino	_	and testing 864
Bpix Mechanics Supports											Torino

Figure 23: INFN construction flow for Inner Tracker

High Density Interconnect (HDI) Hybrids – produced by a supplier company – will be qualified in Bari & Pavia using a dedicated setup.

Qualified good HDIs will be delivered to Firenze for module assembly.

Figure 21: 1x2 and 2x2 modules (left); exploited view of a 1x2 module (right).

INFN commitments in Tracker construction - OT

Figure 24: schematics structure of one side of the Outer Tracker with enlighten the modules in the inner rings and layers delivered by INFN

- >> contribution to **OT common system** (in particular power supply backend system & DAQ)
- contribution to OT commissioning
- contribution to Track Trigger [Track Finder L1 system (implemented by dedicated boards)]

INFN-BARI commitments in **OT** construction - I

> INFN-Bari will take care of the production of the TBPS modules (and later will participate to the OT commissioning) :

					-																	
Legend:				-	n																	\square
X = interest in this item	_		5	tro	ŏĭ			lier														
OT = interest in this item for the entire OT	tro	trol	Dut.	ð	sctu	5	-	ent			2											ase
TBPS = interest in this item for the TBPS	Š	5	v X	lity	Ē	ucti	Ē	se	8	ě	Ē	vare	are	der	ter	E	ter	em	les	, i	5	atat
TB2S = interest in this item for the TB2S	lity	λ	alit	Ő	š	Po 1	ĥ	- da	ani	j	Data	- Apr	oftw	k	sks	syst	sks	syst	cab	ssio	latio	5
TEDD = interest in this item for the TEDD	Qua	na l	ğ	ing.	Sei	le p	Jule	ď	lech	ear	le	P P	š	rac	gas	ety	ling	ver	ver	, iii	stal	ctio
IT = interest in this item for the entire IT	JQ.	3	pri e	Pro l	Ē	npo	Ň	tion	2	8	ptic	DAC	DA	Ē	Ě	Saf	3	Po	Po	5	5	rt l
TBPX = interest in this item for the TBPX	Sen	ASI	£	9	ete	Σ	-	gra			•						-			-		5
TFPX = interest in this item for the TFPX			≈	l m				Inte														-
TEPX = interest in this item for the TEPX				-	Ů																	
INFN Sezione di Bari and Università di Bari, Bari, ITALY			TBPX TEPX			TBPS														от		
INFN Sezione di Catania and Università di Catania, Catania, ITALY			TBPS										от	x						от		
INFN Sezione di Firenze and Università di Firenze, Firenze, ITALY					TBPX TEPX	TBPX TEPX							π					x		π		
INFN Sezione di Genova and Università di Genova, Genova, ITALY					TBPS															от		
INFN Sezione di Milano-Bicocca and Università di Milano- Bicocca, Milano, ITALY													π							π		
INFN Sezione di Padova and Università di Padova, Padova, ITALY		π								x										π		
INFN Sezione di Pavia, Università di Pavia and Università di Bergamo, Pavia, ITALY		x	TBPX TEPX			****														π		
INFN Sezione di Perugia and Università di Perugia, Perugia, ITALY	от					TBPS								x				от		от		
INFN Sezione di Pisa, Università di Pisa and Scuola Normale Superiore di Pisa, Pisa, ITALY	π			TBPX TEPX		14.4.4. ⁴	TBPS	TBPS	тврх				от	x		x				от	π	
INFN Sezione di Torino, Università di Torino and Politecnico di Torino, Torino, ITALY		π					TBPX TEPX	TBPX TEPX	тврх				π							π	π	

INFN-BARI commitments in OT construction - II

PS module assembly : PS-s sensor, Macro-Pixel Sub Assembly (MaPSA) [1 PS-p sensor bump bonded with 16 Macro Pixel Asics], Front-End Hybrid to readout short strips (HL & HR are the 2 types of FEH), Power Hybrid (PH) [equipped with Power DCDC regulator], Optohybrid (OH) [equipped with optical link drivers & opto-fiber connector] will be assembled and glued to mechanical parts in 5 steps, using different jigs, in order to finally form a PS module. Modules will be built in Bari & Perugia (50%-50%). A full qualification test will be performed to assess quality and identify issues. Encapsulation of wire bonding will be made after testing. Qualified modules will be delivered to Pisa.

Infrastructures for Outer Tracker commitments

> Infrastructures @ INFN-Bari for the CMS (Outer) Tracker upgrade :

Description	Location	Comments and Motivations	Task associated	Cost [ke]	INFN Contrib . [kE]	Year
Wire bonding machine	BARI	Replacement of old machine. Already bought	OT 5	150	100	2017
Wire bonding pull tester	BARI	New for wire bonding testing	OT 5	8,5	8,5	2018
Upgrade for Module assembly	BARI	Glue dispenser robot with volumetric control	OT 5	26	26	2019
Climatic chamber	CATANIA	For OT hybrid burn-in	OT 3	40	40	2019
Wire bonding machine	FIRENZE	Replacement of old machine	IT 5	192	112	2017
Probe station	FIRENZE	Silicon sensor receptiom test	IT 5	100	50	2019
Wire bonding machine	PERUGIA	Replacement of old machine	OT 5	150	150	2018
3D Measuring machine	PERUGIA	Update of machine for module survey	OT 5	20	20	2018
8" Probe station	PERUGIA	Replacement of old machine for sensor QA	OT 1	250	250	2018
Upgrade for Module assembly	PERUGIA	Glue dispenser robot with volumetric control	OT 5	26	26	2019
Probe station maintenance	PISA	Pixel Silicon sensor Qualification center	IT 1	35	35	2018
X-ray test station	PISA	For diagnostic of bump-bonding connection and calibration	OT 7	50	50	2018
Termo-camera	PISA	Verification during OT module assemb ly	OT 7	27	27	2018
Cold Box	PISA	Burn-in of OT modules	OT 7	25	20	2019
3D Measuring machine	PISA	Module integration on OT rings	OT 7	60	35	2018
Stocking of mechanical structure	PISA	To store and manipulate OT rings	OT 7	30	30	2019
Climatic chamber	PISA	For testing of sub-assembly of OT rings	OT 7	112	112	2018
12" probe station	TORINO	New for wafer level testing of IT ASIC	IT 2	480	200	2018
Cold box	TORINO	Burn-in of IT modules	IT 7	25	20	2019
X-ray test station	TORINO	For diagnostic and final calibration of IT modules	IT 7	50	50	2018
			Total	1857	1361,5	

......

Lab space of INFN-Bari for Outer Tracker commitments

Currently used Clean Rooms (CP1, CP2) will be confirmed till 2023 and will be saturated in the construction period 2020-2023

Manpower of INFN-BARI for Tracker commitments

>> INFN/CMS-Bari manpower involved in the activities for the construction of new Tracker :

	20195		Average Ma	n Power (wi	thout request)		R	EQUEST	T of M	ANPOW	/ER [F1	[E]]
Institute	TE	TASK	Physicists & Engineers	Technicians	PhD /Temporary	2018	2019	2020	2021	2022	2023	2024	2025	T task (IT3)
Bari	3,9	IT FE Hybrid QC/QA OTPS Module construction	3	0,9	0,2			1	1	1	1			
Catania	1,6	OTPS FE Hybrid QC	1,3	0,2	0			1	1	1				
Firenze	7,4	IT Module construction IT system test IT Serial Power electronics TK Power System	5,1	1	1,5			1	1	1	1	1	1	
Genova	0.5	OTPS Service Hybrids (OH&PH) OC	0.8	0.5				1	1	1	1			1
Milano Bic	2,1	IT DAO Software/sustem test	1,5	0	0,7					1	1	1	1	1
Padova	0,6	TK ASICs QC TK Beam Pipe development	0,5	0,2	0			1	1	1				
Pavia	1,7	IT ASICs QC IT FE Hybrids QC	1	0	0,4			1	1	1	1			
Perugia	6	OT Sensor Process QC OTPS Module construction OT Power System	4,3	1,9	1,3		1	1 1 1	1 2 1	1 2 1	1			
Pisa	5,4	IT Sensor QC IT Bump Bonding QC IT Mechanics construction OTPS Module Burn in OTPS Module Integration OT DAQ software OT Track Trigger TK Safety System	7,2	1	1,7			0,5	1 1 1 1 1	1 1 1 1 1 1	1 1 1 0,5	1	. 1	
Torino	6,6	IT ASIC QC IT Module Burn in IT Mechanics construction IT Module Integration	4,2	2,1	1,2		1	1	1	22	145	1	3	

D INFN/CMS-Bari manpower involved in the activities for the construction of new Tracker :

20	19E			Average M	an Power	(without	request)		REQUEST	of MANPO	WER [FT	E]	
Institute	TE	TASK		Physicists & Engineer	Technic	ians PhD /Ten	nporary	2018 2019	ð 2020	2021 202	2 2023	2024 2025	IT task (IT3)
Bari	3,9	IT FE Hybrid QC/QA OTPS Module constru	ction	3	0,9		0,2		1	1	1 1 1 1		
		Profile	2018	2019	2020	2021	2022	2023	2024	2025	ToT	Task	T T task (OT5)
BARI											41,20		
Donato Creanza		PA	0,5	0,7	0,7	0,7	0,7	0,7	0,1	0,0	4,1	OT 5	
Mauro de Palma		PO	0,1	0,1	0,1	0,3	0,3	0,2	0,0	0,0	1,1	OT 5	
Luigi Fiore		PR	1,0	1,0	1,0	1,0	1,0	1,0	0,5	0,0	6,5	OT 5	
Salvatore My		PA	0,6	0,7	0,7	0,8	0,8	0,8	0,4	0,0	4,8	OT 5	
Alexis Pompili		RU	0,0	0,0	0,1	0,1	0,1	0,0	0,0	0,0	0,3	OT 5	
Lucia Silvestris		PR	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,0	0,4	OT 5	
Giuseppe De Robertis	S	PT El	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,0	1,7	IT 3	
Flavio Loddo		PT El	0,7	0,7	0,7	0,5	0,5	0,5	0,3	0,0	3,9	IT 3	
Tecnologo		TE	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,0	1,4	IT 3	Activity OT
Tecnico INFN 1		Tec	0,2	0,6	1,0	1,0	1,0	1,0	0,3	0,0	5,1	OT 5	🚺 in clean room
Tecnico INFN 2		Tec	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,0	1,4	OT 5	
Tecnico INFN 3		Tec	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,7	OT 5	
Dottorando		PhD	0,0	0,3	0,3	0,3	0,3	0,3	0,3	0,0	1,8	OT 5	
request to INFN		Tec	0,0	0,0	1,0	1,0	1,0	1,0	0,0	0,0	4,0	OT 5	
request to INFN		AdR	0,0	0,0	1,0	1,0	1,0	1,0	0,0	0,0	4,0	IT 3	5
TOT	TAL	FTE/year	3,90	4,90	7,40	7,50	7,50	7,30	2,70	0,00			

Current^{*}**development of CMS Pixel readout chip for Phase-2 upgrade (see next slide)**

CMS Pixel readout chip design for Phase-2

Design/development activity started in 2013 within RD53 Collaboration & CHIPIX65 experiment of INFN-GruppoV frameworks

Purposes:

- Study of the radiation tolerance of the TSMC CMOS 65nm tecnology to evaluate the suitability of the innermost Tracker layers to the expected radiation levels (> 500 Mrad)
- Development of a library of Front-Ends & IP blocks according to CMS&Atlas requirements
- Design, production & test of a pixel chip 64x64 demonstrator in the framework of the Chipix65 exp. (2016)
- Design, production & test of a large scale demonstrator "RD53A" (2017)
- Design of the production pixel chip for CMS&Atlas on the basis of the "**RD53A**" measurements and the final specifications of the two experiments (2018-2019)

RD53 digital pixel chip architecture

F.Loddo is RD53A Project Engineer since 6/2016; recently appointed in this role for the development of the final chip with additional coordination responsibility within RD53 Collaboration. Since 5/2018 also responsible for the development of the pixel ASIC within IT coordination for CMS Phase-2 upgrade.

Activity foreseen in 2018/19 : participation to the pixel chip design & submission to production company (fonderia) foreseen in Q4 2019.

CMS Muon system upgrade

Upgrade goal : maintain excellent triggering,

µ measurement & ID under harsher HL-LHC conditions up to $|\eta| = 2.8$

- All currently installed Muon detectors will be kept operational @ HL-LHC
- High radiation, PU, longer trigger latency require : the upgrade of several components (electronics) the addition of new ones (in forward region)
- The CMS Muon system consists of 4 distinct detector systems : Drift Tubes (DT), Cathode Strip Chambers (CSC), Resistive Plate Chambers (RPC) and Gas Electron Multiplier Detectors (GEM). The first 3 are existing systems which will be upgraded, while the GEMs are new detectors.
 - A longevity validation campaign took place (with Bari contribution) in the past years. As a result : the components requiring upgrade & the actions to be undertaken were identified
 - DT, CSC & RPC detectors currently installed will survive the radiation doses
 - new GEM & iRPC detectors will be able to deal with the expected radiation doses

> Key issues :

- detector electronics must be upgraded to handle high particles rates (high bandwidth optical transfer, ...)
 & to deal with longer latency (DT)

- longevity : aging electronic parts need to be replaced

while detector life expectancy (related to radiation damage) is more than acceptable

- event reconstruction capabilities (@trigger & offline) particularly in forward region that will be completed with the missing RPC chambers & complemented by new GEM chambers to enhance redundancy, to increase # of measurements, spatial & time resolution, to solve @ trigger level of track reconstruction ambiguities
- extended acceptance ($|\eta|$ coverage) to partially complement the wider tracking coverage

Dygrade goal : maintain excellent triggering,

 μ measurement & ID under harsher HL-LHC conditions up to $|\eta| = 2.8$

Σ 1. New forward μ detectors:

Dpgrade goal : maintain excellent triggering,

µ measurement & ID under harsher HL-LHC conditions up to $|\eta| = 2.8$

Σ 1. New forward μ detectors: - Triple GEM technology [in GE1/1, GE2/1 & ME0] to enhance trigger & μ-reco

Dpgrade goal : maintain excellent triggering,

 μ measurement & ID under harsher HL-LHC conditions up to $|\eta| = 2.8$

2 1. New forward μ detectors: - Triple GEM technology [in GE1/1, GE2/1 & ME0] to enhance trigger & μ-reco

- Improved RPC (iRPC) [in RE3/1 & RE4/1] (rates up to 2kHz/cm²,

increased lever arm for μ -reco)

Dpgrade goal : maintain excellent triggering,

µ measurement & ID under harsher HL-LHC conditions up to $|\eta| = 2.8$

- **1. New forward** μ detectors: Triple GEM technology [in GE1/1, GE2/1 & ME0] to enhance trigger & μ -reco Improved RPC (iRPC) [in RE3/1 & RE4/1] (rates up to $2kHz/cm^2$)
 - to handle (aiding CSCs) the most difficult region with high backgrounds, high readout & trigger rates and limited μ -bending (@ higher $|\eta|$)
 - to extend the μ coverage by introduction of MEO (a stack of 6 Triple-GEMs) up to $|\eta| = 2.8$ [complementary to tracker extension up to $|\eta| = 4$]; useful for μ -tagging & reduction of the lost- μ bkg

Dpgrade goal : maintain excellent triggering,

µ measurement & ID under harsher HL-LHC conditions up to $|\eta| = 2.8$

2. Existing detector: - consolidation of detector operation (based on detector longevity studies currently carried out at the GIF++)

- DT & CSC electronics upgrade: replacement to handle ...

- longevity issues,
- higher L1 trigger rates ($100 \rightarrow 750 kHz$),
- higher latency ($3.2 \rightarrow 12 \mu s$)

- Trigger/DAQ upgrade of RPCs: to handle longevity issues & to be compliant to ...

... Phase-2 requirements

The upgrade of the existing RPC DAQ readout electronics (currently recording the hit time in steps of 25ns) will exploit the detector timing information (with resolution of ~1.5ns) thus improving the L1 trigger capabilities.

INFN commitments in Muon system upgrade – overview

>> The CSC is the only part of muon system without INFN involvement.

>> INFN CMS-Bari is involved in GEM & RPC upgrade project :

	Long	gevity		Detect	tor	EI P	On-detee ectronic ower sys	ctor s and stem	Trigger/DAQ	Servic	es	Insta	all. & Co	mm.
INFN, University and Politecnico of Bari		RPC		RPC	GEM			GEM					RPC	GEM
INFN and University of Bologna	DT				GEM				DT	DT		DT		GEM
Laboratori Nazionali Frascati (LNF) INFN		RPC		RPC	GEM						GEM			GEM
INFN and Università "Federico II" di Napoli, Università della Basilicata and Università G. Marconi				RPC			RPC	GEM			GEM			GEM
INFN and Università di Padova	DT					DT			DT			DT		
INFN and Università di Pavia		RPC	GEM		GEM			GEM						GEM
INFN and Università di Torino and Università del Piemonte Orientale	DT					DT			DT	DT		DT		

Fig. 31: Extraction from TDR table of Muon construction responsibilities

Muon system upgrade – schedule overview – I

The schedule for the Muon system upgrade foresees a time-staggered installation !

Indeed - during LS3 - the Muon upgrade activities cannot be integrated due to the overloaded schedule [involving the installation of the new Tracker & High Granularity Calorimeter (HGCAL)]

Muon upgrade activities & installation can be widely anticipated to LS2, YETS 2022 & 2023 (during Run-3):

- the upgrade of the Endcap (CSC) chambers is @ LS2 [refurbish MEx/1 (x=1,...,4) with new FE boards]

- GEM stations (GE1/1) will be installed in LS2 (including pipes & cable services) [*] [partly constructed in Bari]

Muon system upgrade – schedule overview – II

The schedule for the Muon system upgrade foresees a time-staggered installation !

Indeed - during LS3 - the Muon upgrade activities cannot be integrated due to the overloaded schedule [involving the installation of the new Tracker & High Granularity Calorimeter (HGCAL)]

Muon upgrade activities & installation can be widely anticipated to LS2, YETS 2022 & 2023 (during Run-3):

- GEM stations (GE2/1) will be installed in YETS/22 & /23 [*]
- iRPC chambers (RE3/1, RE4/1) will be installed in YETS/22 & /23 [*]

- other activities in 2021-2022 : ME0 construction in Bari (see slide later)

[*] activities requiring INFN-Bari technicians @ CERN

Muon system upgrade – schedule overview – III

The schedule for the Muon system upgrade foresees a time-staggered installation !

Indeed - during LS3 - the Muon upgrade activities cannot be integrated due to the overloaded schedule [involving the installation of the new Tracker & High Granularity Calorimeter (HGCAL)]

Last Muon upgrade activities concern LS3: - ME0 GEM stations will be installed in 2024-2025 [LS3] [*]

Calendar Year 2016 2017 2018 2019 2020 2021 2023 2024 2025 2026 202 Long Shutdowns 152 153 GE1/1 Engin. Pre-prod.- Prod.-Integ. stall. Comm DT Engin. - Proto. ESR ... Pre-prod. - Prod.-inte. stall. Comm. Design - Demo.. Float CSC **On-detect**, El **On-detect. Electr. Prod.** Off-Det Elec. Pre-prod. ESR **Off-Det Elec.** Production Install. Comm. Design - Demo.. .Engin. - Pro ESR stall. Comm Float RPC Link system Design - Demo. . Engin. - Proto Pre-prod. - Prod.-Integ. Float Install. Comm. ESR RPC3/4-1 Design - Demo., Install, Comm Engin. - Proto Pre-prod. Pre-prod. - Prod.-Integ. Float Float GE2/1 Engin. - Proto. Pre-prod. - Prod.-Integ. install, Con Pre-prod. Design - Demo. EDR Pre-prod. - Prod. -Inte. ESR Engin. - Proto. II. Comm. More detailed time schedule in a backup slide **ES3**

The MEO installation will be done in surface while the assembly of the Calorimeter endcaps (HGCAL) will be carried out, during LS3, as CMS moves into a closed barrel configuration. The installation of the HGCAL will require the extraction of the ME1 (CSC, RPC, GEM) chambers and subsequent re-installation & re-commissioning [*].

[*] activities requiring INFN-Bari technicians @ CERN

Upgraded Muon system performances - I

Few examples of foreseen performances (with full MC simulation):

\blacktriangleright Enhanced μ triggering & identification in the forward region :

- The Phase-2 upgraded forward muon system has new detectors (GE1/1, GE2/1, RE3/1, RE4/1) that provide 1) further high-resolution measurement points & 2) an increased lever arm for μ reconstruction, in the current range $|\eta| < 2.4$

- The MEO chambers extend the acceptance to $|\eta| = 2.8$, providing additional hits for triggering and offline μ reconstruction

- GEM chambers, in tandem with CSC ones, provide accurate measurement of μ \checkmark "local bending" angles, thus improving the muon momentum measurement

Illustration of the additional

Upgraded Muon system performances - I

CMS Phase-2 Upgrade @INFN-Bari

Few examples of foreseen performances (with full MC simulation):

\blacktriangleright Enhanced μ triggering & identification in the forward region :

- The Phase-2 upgraded forward muon system has new detectors (GE1/1, GE2/1, RE3/1, RE4/1) that provide 1) further high-resolution measurement points & 2) an increased lever arm for μ reconstruction, in the current range $|\eta| < 2.4$

- The MEO chambers extend the acceptance to $|\eta| = 2.8$, providing additional hits for triggering and offline μ reconstruction

- GEM chambers, in tandem with CSC ones, provide accurate measurement of μ "local bending" angles, thus improving the muon momentum measurement

Upgraded Muon system performances - II

Upgraded Muon system performances - II

CMS Phase-2 Upgrade @INFN-Bari

INFN(-Bari) commitments in GEM construction

This will be in addition to the current (2017/8) production activity of 18 GE1/1 chambers @ Bari : 13 chambers already constructed & tested (5 to be done) [next slide]; installation+commissioning in LS2

Current Production @ Bari of GE1/1 chambers

>> INFN/CMS-Bari manpower involved in the activities for the new GEM detectors :

Institue	2019 575	Tock	Avergae Man	ower (without	request)		Reque	est of I	manp	ower	(FTE)	
Institue	2018 FTE	Task	Physicist and Engineer	Technicians	PhD/Temporary	2019	2020	2021	2022	2023	2024	2025
Bari	2.2	MEO.RD.DET.6, MEO.PR.DET.1, MEO.PR.DET.2,	2.0	0.5	1.2	1,00	1,00	1,00	1,00	1,00	1,00	
bari	3,3	GE.RD.FE.5, MEO.RD.FE.5, MEO.RD.DET.6	2,0	0,5	1,5	0,50	0,50					
Bologna	1,2		1,1	0,4	0,2							
	1.2	GE21.RD.DET.2, GE21.RD.DET.4, GE21.PR.DET.2	0.0	0.0	0	1,00	1,00	1,00				
Frascati	1,2	MEO.PR.FE.1, MEO.PR.DET.4	0,9	0,8	U				1,00	1,00	1,00	
Napoli	1,7		1,7	0,5	0,5							
Pavia	1,4		2,0	0,4	1,0		1,00	1,00				

>> INFN/CMS-Bari manpower involved in the activities for the new GEM detectors :

								_							
In	stitue	2018 FTF			Task					Avergae	Manp	ower (wi	Request of manpower (FTE)		
	Service	20101112			1036			Ph	vysicist a	na engir	neer	Technic	cians	PhD/Tem	porary 2019 2020 2021 2022 2023 2024 2025
	Bari	2.2	MEO.RD.DET.6, N	/IEO.PR.DE	T.1,MEO.P	PR.DET.2,			-			0.5		1.2	1,00 1,00 1,00 1,00 1,00 1,00
	bari	3,3	GE.RD.FE.5, MEO.	.RD.FE.5, N	MEO.RD.D	ET.6			4	2,0		0,5		2,5	0,50 0,50
ame		Profile	Status	Project	2018	201.9	2 0 2 0	2021	2022	2023	20.24	2025	202.6	Total	Task Caratteristiche Sede
ARI		TORC	Status	riged	2010	2023	2020	LULI	2022	2025	2024	2025	2020		TROK CENTREMONITE 2000
olaleo Anna		Physicist	Staff	GEM	0,40	0,40	0,70	0,70	0,70	0,70	0,60	0,60	0,60	5,40	GE21.PR.DET.2, GE21.PR.DET.4, ME0.PR.DET.1, QC camere / commissioning Bari ME0.PR.DET.2, ME0.PR.DET.3, ME0.PR.DET.4 detector Bari
taggi Marcel	la	Physicist	Staff	GEM	0,70	0,70	0,70	0,70	0,70	0,70	0,70	0,70	0,70	6,30	GE.RD.FE.5, GE21.PR.DET.3, ME0.RD.FE.5, ME0.RD.DET.6 Stand/commissioning/operations Bari
uzzo Salvato	re	Physicist	Staff	GEM	0,10	0,40		AT3	ben	ch-te	ests			0,50	GE21.RD.DET.2, GE21.RD.DET.4, ME0.RD.DET.6 costruzione e QC camere Bari
anieri Antori	ia	Physicist	Staff	GEM	1.00	1.00	0.10							2.10	GE21.RD. DET 2. GE21.RD. DET 4. MEO.RD. DET 6. costruzione e.O.C. camere Bari
		r nyacar	Juli	0.544	1,00	1,00	0,10	VFA	AT3 F	Packa	agir	າg & ່	Test	2,20	
erwilligen Pi	et Omer J	Physicist	Staff	GEM	0,40	0,70	0,70	0,70	0,70	0,70	0,70	0,70	0,70	6,00	GE21.PR.DET.4, ME0.PD.DET.6, Costruzione e QC camere & Bari ME0.PR.DET.1,ME0.PD.DET.2, ME0.PR.DET.3, commissioning ME0.PR.DET.4
e Robertis G	iuseppe	Engineer	Staff	GEM	0,30	0,30	0,30	0,30	0,30	0,30	0,20			2,00	GE21.RD.FE.2, GE21.RD.FE.3, ME0.RD.FE.2, ME0.RD.FE.4 progettazione elettronica Bari
od do Flavio		Engineer	Staff	GEM	0,20	0,20	0,20	0,20	0,20	0,10	0,10			1,20	GE21.RD.FE.2, GE21.RD.FE.3, ME0.RD.FE.2, ME0.RD.FE.4 progettazione elettronica Bari
ngineer (nov	v AdR)	Engineer	Staff	GEM	0,20	0.20	0,20	0,20	0,20	0,20	0,20			1,40	GE21.RD.FE.2, GE21.RD.FE.3, ME0.RD.FE.2, ME0.RD.FE.4 Bari
ost-doc 1		AdR	Temp	GEM	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	4,50	GE21.RD. DET.2, GE21.RD.DET.4, GE21.PR.DET.2, GE21.PR.DET.4, ME0.RD.DET.6, ME0.PR.DET.1,ME0.PR.DET.2, ME0.PR.DET.3, ME0.PR.DET.4 Bari
hD student 1	ı	PhD studen	t Temp	GEM	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,40	3,60	GE21.RD. DET.2, GE21.RD.DET.4, GE 21.PR.DET.2, GE21.PR.DET.4, ME0.RD.DET.6, ME0.PR.DET.1,ME0.PR.DET.2, ME0.PR.DET.3, ME0.PR.DET.4
hD student 2	2	PhD studen	t Temp	GEM	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,40	3,60	GE21.RD.DET.2, GE21.RD.DET.4, GE 21.PR.DET.2, GE21.PR.DET.4, MIO.RD.DIT.6, ME0.PR.DET.1,ME0.PR.DET.2, ME0.PR.DET.3, ME0.PR.DET.4 (construction
achnicia n 2		Technician	Staff	GEM	0,20	0,40	0,60	0,60	0,60	0,60	0,60	0,20	0,20	4,00	GE21.RD.DET.2, GE21.RD.DET.4, GE21.PR.DET.2, GE21.PR.DET.4, ME0.RD.DET.6, ME0.PR.DET.1,ME0.PR.DET.2, ME0.PR.DET.3, ME0.PR.DET.4 Bari
echnician S		Technician	Staff	GEM	0,10	0,10	0,10	0,10	0,10	0,10	0,10			0,70	GE21.RD.FE.2, GE21.RD.FE.3, MEO.RD.FE.2, MEO.RD.FE.4 elettronico Bari
hysicist 1		AdR	Request	GEM	2/1	1,00	1,00	1,00	1,00	1,00	1,00	Ĵ,₩E	0	6,00	GE21RD.DET.4, GE21.PR.DET.2, GE21.PR.DET.4, ME0.RD.DET.6, ME0.PR.DET.1,ME0.PR.DET.2, ME0.PR.DET.3
ngineer 2		AdR	Request	GEM	\leq	0,50	0,50	2						1,00	GE.RD.FE.5, ME0.RD.FE.5, ME0.RD.DET.6 competenze elettronica per front- end
		TOTAL FTE /YE	AR		4,90	7,20	6,40	5,80	5,80	5,70	5,50	3,50	3,50		
	[shar in sa	r <mark>ed with</mark> ame 2 y	RPC V rears]	FAT:	3*Q(2 & 1	Test		C	han	nbe	er co	nsti	ructio	on & test

CMS Phase-2 Upgrade @INFN-Bari

Lab space of INFN-Bari for GEM commitments

Currently used laboratory space (Clean Room + 2 Labs) confirmed & saturated for the period 2019/23

INFN(-Bari) commitments into RPC upgrade

- > Activities for the RPC upgrade are foreseen to be carried out @CERN :
 - >> ongoing longevity tests @ GIF++, to be continued & completed by 2018/9
 - > in LS2 (2019-20) : RPC leak repairs & installation of services for RE3/1, RE4/1
 - in YETS/22 & /23 : installation of iRPC chambers (RE3/1, RE4/1) [36 & 36] & commissioning
 - in LS3 (2024-25) : re-installation & re-commissioning of ME1 RPC chambers
- Front-End board electronics

18 & 18 (x2 endcaps)

double-gap RPC

wedge-shaped with

- HPL electrodes,
- pick-up strips in the middle,
- improved FE electronics

INFN(-Bari) commitments into RPC upgrade

- > Activities for the RPC upgrade are foreseen to be carried out @CERN :
 - >> ongoing longevity tests @ GIF++, to be continued & completed by 2018/9
 - > in LS2 (2019-20) : RPC leak repairs & installation of services for RE3/1, RE4/1
 - in YETS/22 & /23 : installation of iRPC chambers (RE3/1, RE4/1) [36 & 36] & commissioning
 - in LS3 (2024-25) : re-installation & re-commissioning of ME1 RPC chambers

Front-End board electronics

The new iRPC chambers will need to be instrumented with a new a Front-End (FE) board electronics.

The **baseline** for the FE electronics is developed in Lyon (PETIROC).

A **back-up choice** is represented by a - currently under study - ASIC chip developed in Bari & Roma-TorVergata (synergy with ATLAS); a 16-channel version has been successfully tested on a double-gap RPC @GIF++ during summer 2017.

Final decision on the electronics will be taken after suitable test-beams and within 2018 [*].

18 & 18 (x2 endcaps)

double-gap RPC wedge-shaped with

- HPL electrodes,
- pick-up strips in the middle,
- improved FE electronics

[*] for testing & integration activity a technological contract for an electronics expert (in 2019-2020) has been required for INFN-Bari

Manpower of INFN/CMS-BARI for RPC commitments

>> INFN/CMS-Bari manpower involved in the activities for the RPC detectors :

Manpower of INFN/CMS-BARI for RPC commitments

>> INFN/CMS-Bari manpower involved in the activities for the RPC detectors :

	TOT FTE	Construction Tasks		Avera	age Man	power (2018-20	26) w/o	utreque	ests in FT	E			Requests of Manpow	er		T	OT contracts	5 TOT Cost	(Keu)			
20	018 2018 Fase2	2		Physic	ist&Eng	ineers	Techn	icians	Ph	D/Temp	Type	2	018 2	2019 2020 2021 20	022 20	23 2024	2025	Person Year	25Keu/y	/ear		Request	of manpower (FTE)
Bari S	5,1 2,6	chamber tests at CERN front end electronics commissioning			1,6		0,:	36		0,8	A			0,5 0,5				0 1 0 0	0 25 0 0		·	Assegno	Tecnologico
Name	Profile	Status	Project	2018	2019	2020	2021	2022	2023	2024	2025	2026	Total	Task									
Bari M.Abbrescia	Physicist	Staff	RPC	0,2	0,4	0,4	0,5	0,5	0,3	0,3	0,3	0,3	3,2	RPC.PP.DET1, RPC.P	PK.DET.	2, KPC.PK	UELJ,	KPC.PK.DEI	.4, KPC.PK.	DE 1.5,	, KPC.PK.DE1.6, K	PCPK.DEL./	
N.De Filippis G.laselli	Physicist Physicist	Staff	RPC RPC	0,1 0,6	0,1 0,6	0,1 0,6	0,1 0,6	0,1 0,6	0,1 0,3	0,1 0,3	0,1 0,2	0,1 0	0,9 3,8	RPC.PP.DET1, RPC.P	PR.DET.	2, RPC.PR 2, RPC.PR	.DET.3,	RPC.PR.DET	.4, RPC.PR.	DE 1.5, DE T.5,	, RPC.PR.DET.6, R	PCPR.DET.7	
G.Pugliese Engineer (now Adl	Physicist R) Engineer	Staff	RPC RPC	0,5 0,1	0,5 0,1	0,5 0,1	0,6 0,1	0,6 0,1	0,6 0,1	0,8 0,1	0,8 0,1	0,8 0,1	5,7 0,9	RPC.PP.DET1, RPC.P	PR. DET.	2, RPC.PR	.DET.3,	RPC.PR.DET	.4, RPC.PR.	DET.5,	, RPC.PR.DET.6, R	PC.PR.DET.7	
PhD student 1	PhD stude	nt Temp	RPC	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	7,2	RPC.PP.DET1, RPC.P	PR. DET.	2, RPC.PR	.DET.3,	RPC.PR.DET	.4, RPC.PR.	DET.5,	RPC.PR.DET.6, R	PC.PR.DET.7	
Technician 1	Technician	Staff	RPC	0,2	0,2	0,2	0,2	0,4	0,4	0,4	0,2	0,2	2,4	RPC.PP.DET1, RPC.P	PR. DET.	2, RPC.PR	.DET.3,	RPC.PR.DET	.4, RPC.PR.	DET.5,	, RPC.PR.DET.6, R	PC.PR.DET.7	
Technician 2	Technician	Staff	RPC	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,9	RPC.PP.DET1, RPC.P	PR.DET.	2, RPC.PR	.DET.3,	RPC.PR.DET	.4, RPC.PR.	DET.5,	RPC.PR.DET.6, R	PC.PR.DET.7	
	Engineer	Request	RPC		0,5	0,5	2																
		TOTAL	FTE /YEAR	2,60	3,30	3,30	3,00	3,20	2,70	2,90	2,60	2,40											-
-						ļ																	-
I.	shared w	vith GEM																					

in same 2 years]

iRPC FE electronics

Recent/current Contributions/Responsibilities within CMS

Solutions to MUON TDR :

> Official editors :

- C. Calabria (Cap.6: New GEM detectors)
- A. Colaleo (Cap.9: Organization, schedule, cost)

Contributions (plots, ...)

G. Pugliese, A.Gelmi (Cap.4: RPC upgrades and new RPC detectors)

C. Calabria, A.Sharma, F.Errico (Cap.7: Muon trigger and reconstruction)

N. De Filippis, R.Venditti (Cap.7: Muon trigger and reconstruction)

Contributions to TRACKER upgrade :

- N. De Filippis (plots for TRACKER TDR)
- A. Di Florio (studies in ML group / workshops)
 (Deep Learning for Pixel doublets filtering @ HL-LHC)

Responsibilities in years 2017-18 :

Gruppo	Livello in CMS	Nome	Responsabilità
MUON	L1	Anna Colaleo	Muon System Manager
RPC	L2	Gabriella Pugliese	RPC Project Manager
RUN	L1	Lucia Silvestris	Run Coordinator
тк	L2	Flavio Loddo	RD53 Project Engineer
GEM	L2	Marcello Maggi	Operation & Online System Coordinator
PHYS	L3	Alexis Pompili	B-Phys Spectroscopy Convener
COMP	L3	Giorgio Maggi	Bari Tier2 Coordinator
GEM	L3	Rosamaria Venditti	Upgrade Physics Coordinator
MUON	L3	Raffaella Radogna	High-pt muon sub-convener
GEM	L3	Piet Verwilligen	Phase 2 Simulation Coordinator
GEM	L3	Archana Sharma	Reconstruction & Validation Coordinator
GEM	L3	Cesare Calabria	Software & Online Contact for Upgrade
		Mauro de Palma	Career Committee
		Nicola De Filippis	Schools Committee co-chair, MulB Advisory Group, CMS Thesis Award Comittee
PHYS	L4	Leonardo Cristella	B-Phys Muon contact

In red squares those related to the Upgrade tasks

CONCLUSIONS

The HL-LHC & CMS Phase-2 are widespread & complex projects that will allow to perform Physics research (@CERN) for other 15 years, going from the Energy Frontier to the Intensity Frontier (by increasing luminosity rather than energy scale) and looking for New Physics signs while performing precision measurements.

CMS-Bari has been, is and will be heavily involved in activities for the CMS Phase-2 upgrade. In particular into:

- new Tracker construction & commissioning
- new GEM detectors construction, test & commissioning
- new iRPC test & commissioning

Construction activities imply intense efforts from physicists & technicians highly committed in INFN-Bari properly equipped laboratories, till LS3 (2024-26).

Limited amount of temporary but fully dedicated experts need to be hired on specific tasks.

Further efforts, also from technicians, will be requested in test & commissioning activities @CERN.

NOTE: all quoted numbers are those proposed to Comm. Naz. GR.I & directors of Sezioni INFN, discussed with referees and provided for scrutiny by the INFN-Comitato Tecnico-Scientifico

BACKUP

CMS-Bari manpower plan in a nutshell

	20185		Average Ma	n Power (wit	hout request)		R	EQUEST	f of M/	ANPOW	/ER [FT	'E]	
Institute	TE	TASK	Physicists & Engineers	Technicians	PhD /Temporary	2018	2019	2020	2021	2022	2023	2024	2025
Bari	3,9	IT FE Hybrid QC/QA OTPS Module construction	3	0,9	0,2			1	1	1	1		

Institue 2019 ETE Task			Averg	ae Manpow	/er (without i	request)										
Institue	2018 FT		Lask	Physicist and En	ngineer T	echnicians	PhD/Ten	nporary	2019	2020	2021	2022	202	3 202	24 2	025
Basi	2.2	MEO.RD.D	ET.6, ME0.PR.DET.1,ME0.PR.DET.2,	2.0		0.5	1		1,00	1,00	1,00	1,00	1,00	1,0	00	
bari	3,3 GE.RD.FE.5, ME0.RD.FE.5, ME0.RD.DET.6		5, MEO.RD.FE.5, MEO.RD.DET.6	2,0		0,5 1,3		3	0,50	0,50						
											1					
											1					
									1		i					
INICTITUTE	тот	FTE	Construction Tasks	Average Manpower	(2018-2026)) w/out reque	ests in FTE		1	Req	uests of	f Manpo	wer			
INSTITUTE	TOT 2018	FTE 2018 Fase2	Construction Tasks	Average Manpower Physicist&Engineers	(2018-2026) Technicia) w/out reque ans Phi	ests in FTE D/Temp	Туре	2018	Req 2019	uests of 2020	f Manpo 2021	2022	2023	2024	2025
INSTITUTE	TOT 2018	FTE 2018 Fase2	Construction Tasks	Average Manpower Physicist&Engineers	(2018-2026) Technicia) w/out reque ans Phi	ests in FTE D/Temp	Туре	2018	Req 2019	uests o 2020	f Manpo 2021	2022	2023	2024	2025
INSTITUTE	TOT 2018	FTE 2018 Fase2	Construction Tasks chamber tests at CERN front end electronics	Average Manpower Physicist&Engineers	(2018-2026) Technicia) w/out reque ans PhD	o 8	Туре АТ	2018	Req 2019 0,5	uests o 2020 0,5	f Manpo 2021	2022	2023	2024	2025
INSTITUTE Bari	TOT 2018 5,1	FTE 2018 Fase2 2,6	Construction Tasks chamber tests at CERN front end electronics commissioning	Average Manpower Physicist&Engineers 1,6	(2018-2026) Technicia 0,36)w/outreque ans Phű	ests in FTE D/Temp 0,8	Type AT	2018	Req 2019	uests o 2020 0,5	f Manpo 2021	2022	2023	2024	2025

Request of manpower (FTE) :

- 1 Assegno Tecnologico (2019-2020) x GEM+RPC [2 anni]
- 1 Assegno di Ricerca (2019-2024) x GEM (GEM2/1+ME0) [3+3 anni]
- 1 Assegno di Ricerca (2020-2023) x Tracker (IT3) [4 anni]
- 1 Tecnico (2020-2023) x Tracker (OT5) [4 anni]

CMS is running very well in 2018

CMS Integrated Luminosity, pp, 2018, $\sqrt{s} = 13 \text{ TeV}$

- Very fast commissioning of CMS, matching the fast ramp-up of LHC
 - Despite the tight technical stop with unplanned Pixel detector refurbishment
- Very good recording efficiency, above 94%
- **>** Peak luminosity ~ $2 \cdot 10^{34} Hz/cm^2$
 - Corresponding to Pile-Up > 55
 - Deadtime negligible also at the highest luminosity (factor 2 higher than design)
- Fraction of active channels is high and stable

Projected LHC performance through 2035

7 TeV

2011

rz cross section of a CMS detector quadrant

The layout of the upgraded MUON system is shown in Fig. 8. New detectors added specifically for the HL-LHC Phase-2 upgrade and located in the endcaps (GEM, additional RPCs) are indicated.

Figure 8: An R-z cross section of a quadrant of the CMS detector, including the new Phase-2 components (RE3/1, RE4/1, GE1/1, GE2/1, ME0). The interaction point is at the lower left corner. The locations of the various muon stations are shown in color (MB = DT = Drift Tubes, ME = CSC = Cathode Strip Chambers, RB and RE = RPC = Resistive Plate Chambers, GE and ME0 = GEM = Gas Electron Multiplier). M denotes Muon, B stands for Barrel and E for Endcap. The magnet yoke is represented by the dark gray areas.

New MIP Timing Detector

Endcap Timing Layer (LGAD)

- Larger radiation dose
- More flexible installation schedule →time for R&D
- R&D synergies with ATLAS

MUON HIGH LEVEL MILESTONES	20	116		201	7	_		2018	_		2	019	_		2020)	_	2	021	-		2022		_	202	3		_	2024	_		202	5
TIMELINE	01 02	03 04	Q1	02 0	3 0	4 Q	1 02	03	Q4	01	02	03	Q4	01 0	2 0	3 Q4	01	02	03 04		01 0	2 03	Q4	01	02 (03	Q4 (01	02 03	Q4	01	02	Q3 Q4
MUON UPGRADES STAGES			TDRS	ish. 05/17																													
ALL SYSTEMS LONGEVITY			Muniang	nihi 🕴								MuenLa	i fringe	•														Insta	09/24	_			
DRIFT TUBES (DT)															+ 1044	(W																	
FE Minicrates	1			* 13PES	1		+ 01.00	1763		ST.ND/E4		DC.8	ana •	DT.MHEL					BOADET					a	A.ALZ +			07.98	713 4				
BE system		0140.8	£1.		10.85.2					PERSONAL PROPERTY		STR										DT.MARE 1	•					DC.ME	#II +				
CATHOD STRIP CHAMBERS (CSC)						AL ES	R (66/18)					ingtal.	94/19												BE ESR2	/29					in	64.1/25	
FE electronics	CCKRAFT +	CCKS/E2				0	CASPES	CIC/R	AL 0	CPR/REZ (Т									
Power Supplies (LV)		GCR	. נאנ			ace	0.15.44																										
BE electronics FED	-						CROALEZ												+ CCADE	E.A											GCM	HI +	
BE electronics ODMB										• 00		i.					111														ace		
RESISTIVE PLATE CHAMBERS (RPC)									ED# 1/					FE LINE 12	161	,	Uph ESA	16/99			+ 1000	a sugar		1	notes, Dity								
Chambers		are:	CADDETS		K\$ DE72	+ HCR	0.067.3		PC RD DE			RPC#	1700	. BICH	1790																		
Chambers assembl 1st endcap																+=0	A DET 2	INCHLORY.	•		APC.PR.DET	•											
Chambers assembly 2nd endcap																		APC P	• • •			PCM.DETA	. RICH	267.7									
FE electronics		arc.	CADALI		10,912	and a		•	RPCAD/			MC.	mili		IFCM.R	·· , ···	PR FEZ																
Power Supplies and services							-	CADALI			CADIN	2 . NCA	utt			K ROLLE W			NCPLACE														
Link system											APC .	1001	- 417	CABLES .	IPCXD.BE		. BOAL	11, 100	103	K R	1234	CPRISA			_								
GEM 2/1									CO# 3/				1	1911/9							parte	01/22			instal, i	LV4							
Chambers		6621	-	•		6621.80		•	•			6621.PR.08	11						6621		er 11 +												
Chambers assembl 1st endcap								4	121,80.0	TA .										•	1								٠				
Chambers assembly 2nd endcap																			GEOL/M.DET.2	- 64	ELPH DIT								- 10	MURT	NEELMAN	20021741	10
FE electronics		6821	-		121.80.71	12 8	H21.80/E			6821.82	R 4	6821.8	2/6.3				+ 40	LM M L															
BE electronics/Power Supplies		662					12 e					6621.8								_		_			6621.79.1	111				81.94.8	42	_	
GEM0									112	Lesson and							ES# 4/3	81 			ED# 10/2										ins	ul 08/25	+
Chambers		MERAD	LDITL (MERADE						ganaet.			-	ND.DET.4		MERAD			+ MELEO	1075				10,11,0	. 11		LTRO PRODUCTS		-				+
FE electronics		ME	10/61	• MED.RD/	62 \$							- A		-	ERGPEA	 M801 	10/E3+				+ 10	M.FE1									MELIA	DETA, MED	PR 86.2
BE electronics/Power Supplies		MELA	. 138.0	MED.AD	112.											MELAD	HI +							MELPH									+

Fig. 33: detailed schedule with information of the milestones, with their tag as reported in the tables below.

Concept of Trigger latency

- Trigger latency = finite time to form the trigger decision and distribute it to the digitizers
 - More complex is the selection, longer the latency
 - Signals have to be delayed until the trigger decision is available at the digitizers
- Valid interactions are rejected due to system busy during digitization/readout
 - Dead-time is source of inefficiency

CMS Triple-GEM detector - I

Figure 4.5: Left) Electric fields and equipotentials across the GEM foil. Within the holes the amplifying field ranges from 50 - 80kV/cm. Center) A **CMS Triple-GEM** simulation of electron multiplication in the vicinity of the hole in a GEM foil. Right) Arrangement of the triple-GEM detector with three foils, a drift electrode on the top and a readout electrode at the bottom defining drift and induction fields.

CMS Triple-GEM detector - II

Diagram of the GEM electronics readout system for CMS

GEM activities @Bari – RECAP

Past activities in 2018:

- Build & Test 18 GE1/1 chambers (spring-summer 2018) + Build GE2/1 prototypes (fall 2018)
- VFAT3 design, bench-tests & tests with full GE1/1 chambers @ CERN
- Analysis of Slice Test data, Run Coordination

Activities in 2019-2020 (LS2):

- Install & commissiong GE1/1 chambers + Detector Performance Analysis
- Build & Test 72 GE2/1 chambers (2019-2020) together with LNF
- VFAT3 Packaging & Test

Activities 2021-2025 (EYTS + LS3):

- Build & Test 54 ME0 chambers (2021-2022) together with LNF
- Install GE2/1 in YETS 2022 & 2023 + Commissioning & Detector Performance
- Install ME0 in 2024-2025 (LS3) + Commissioning & Detector Performance

GEM milestones

	GE21.RD.DET.1 GE21.RD.FE.1 GE21.RD.BE.1	GE2/1 R&D: Key detector system design pa- rameters are defined based on performance	21.Mar.17
Design	GE21.RD.FE.2	GE2/1 R&D: On-chamber electronics pre- liminary design completed and interfaces	19.Jun.17
	GE21.RD.BE.2	GE2/1 R&D: Off-chamber electronics pre- liminary design completed and interfaces	12.Mar.18
	GE21.RD.DET2	GE2/1 R&D: A full size chamber prototype with partially instrumented readout built,	1.May.18
	GE21.RD.DET.3	GE2/1 R&D: Detector design parameters optimization completed, final chamber de-	8.May.18
	GE21.RD.FE.3	GE2/1 R&D: On-chamber electronics proto- types engineering design complete	1.Jun.18
ping	GE21.RD.FE.4	GE2/1 R&D: On-chamber electronics proto- type electronics manufacturing and testing	9.Oct.18
Prototy	GE21.RD.DET.4	is complete GE2/1 R&D: Performance of the demonstra- tor chamber with prototype electronics is validated	12.Mar.19
	GE21.RD.FE.5 GE21.RD.BE.3	GE2/1 R&D: On-chamber and off-chamber prototype electronics integration and perfor- mance studies completed	12.Dec.19
		GE2/1 PRR for the On-Detector Services	3.Aug.2018
		GE2/1 PKK for the Foil Production	13.Nov.2018
		GE2/1 ESR	12.Dec.2019
ĸ	GE21.PR.DET.1	GE2/1 On-Disk Services Installation Com-	20.May.2019
ductio	GE21.PR.FE.1	GE2/1 On-Chamber Electronics Manufac- turing and Testing is Completed	3.Mar.2021
Pro	GE21.PR.DET.2	GE2/1 Chambers for Disk-1 are assembled, tested, and ready for installation	16.Nov.2021
	GE21.PR.DET.3	GE2/1 Module manufacturing and testing is complete	8.Feb.2022
	GE21.PR.DET.4	GE2/1 Chambers for Disk-2 are assembled, tested, and ready for installation	5.Apr.2022
	GE21.PR.BE.1	GE2/1 Off-Chamber Electronics Manufac- turing & Testing completed and ready for in- stallation	5.May.2023
		GE2/1 Full Detector Commissioning Starts	15.Mar.2024

RPC system Longevity test @ GIF++(Cern)

2 **RE2 chambers** (Irrad & Ref)

2 **RE4 chambers** (Irrad & Ref)

To certify the RPC system at HL-LHC conditions a new LONGEVITY STUDY started @ *Gamma Irradiation Facility* (*GIF*++) *in 2016*

9200 9400 9600 9800

9000

10000 10200

HV_{off} [V]

Setup @ GIF++:

RPC activities @Bari – RECAP

Past activities in 2018:

• Longevity tests RPC in GIF++ Operation & Analysis: RPC system ok up to 0.6kHz/cm²

Activities in 2019-2020 (LS2):

- Longevity tests RPC in GIF++ to be continued
- Gas Leak Repairs + services iRPC
- FE electronics tests (ATLAS chip as backup for PETIROC)

Activities 2021-2025:

• iRPC chamber validation @ CERN + installation in YETS 2022-2023

+ Commissioning & Detector Performance

RPC milestones

	ID	Milestone title	Date
4	ME0.RD.DET.1 ME0.RD.FE.1 ME0.RD.BE.1	ME0 R&D: Key detector system design pa- rameters are defined based on performance	21.Mar.17
Design	ME0.RD.DET.2	ME0 R&D: Irradiation studies and assess- ment of performance and longevity with	11.Jul.2017
	ME0.RD.FE.2 ME0.RD.BE.2	ME0 R&D: On-chamber & off-chamber elec- tronics preliminary principal design com- plete and interfaces defined	25.Jul.17
	ME0.RD.DET.3	ME0 R&D: Chamber (stack) prototype me- chanical design completed	18.Dec.2018
	ME0.RD.FE.3	ME0 R&D: On-chamber electronics engi- neering design completed and validated	23.Aug 2019
ping	ME0.RD.DET.4	ME0 R&D: Chamber (stack) prototype me- chanical prototype testing and validation complete	24.Dec.2019
Prototy	ME0.RD.FE.4	ME0 R&D: On-chamber electronics proto- type electronics manufacturing and testing is complete	21.Aug.2020
	ME0.RD.BE.3	ME0 R&D: Integration of the on-chamber and off-chamber electronics and perfor- mance assessment complete	8.Jan.2021
	ME0.RD.DET.5 ME0.RD.FE.5	ME0 R&D: Assessment of the electron- ics performance and integration with the demonstrator chamber completed	30. Mar. 2021
	ME0.RD.DET.6	ME0 R&D: Beams and Cosmics testing of the demonstrator chamber and performance qualification completed	31.Aug.2021
		ME0 PRR for the Foil Production	14.Jun.2021
		ME0 Detector EDR	28.Oct.2021
tion	ME0.PR.FE.1	ME0 On-Chamber Electronics Manufactur- ing and Testing complete, ready for chamber	29.Mar.2022
roduc	ME0.PR.DET.1	ME0 Chambers for Disk-1 are assembled,	4.May.2023
B	ME0.PR.BE.1	ME0 Off-Chamber Electronics Manufactur-	8.June.2023
	ME0.PR. DET.2	ME0 Chambers for Disk-2 are assembled, tested and ready for installation	7.Mar.2024
	ME0.PR.DET.3	All ME0 Stacks Installed in the New Nose. Detector is ready for installation as part of the endcap at Pt. 5	23.May.2024
	ME0.PR.DET.4 ME0.PR.FE.2 ME0.PR.BE.2	Construction Project Complete. Ready for Global System Commissioning	12.Sep.2025