

THE STERILE NEUTRINO PUZZLE:

new experimental results and the global analysis

Lea Di Noto

SEMINARIO GENERALE

28 June 2018

OUTLINE

Introduction

- The disappearance v_e / \overline{v}_e experiments
 - → the reactor experiment
 - → the radioactive artificial source experiment

+ constrains from solar data

- The disappearance v_{μ} / \overline{v}_{μ} experiments
 - → the accelerator experiment (MINOS/MINOS+)

+ constrains from atmospheric data

- The $v_u \rightarrow v_e$ appearance experiments
 - → LSND and the latest results from MiniBoone
- Global analysis
- Future prospective

THE 3 flavor STANDARD SCENARIO

The Standard Model of neutrino oscillations solved the solar anomalies

Pontecorvo- Maki -Nakagawa -Sakata matrix

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 1} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Measured parameters:

	Any Ordering
	3σ range
$\theta_{12}/^{\circ}$	$31.42 \rightarrow 36.05$
$\theta_{23}/^{\circ}$	$40.3 \rightarrow 51.5$
$\theta_{13}/^{\circ}$	$8.09 \rightarrow 8.98$
$\delta_{\mathrm{CP}}/^{\circ}$	$144 \rightarrow 374$
$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$6.80 \rightarrow 8.02$
$\Delta m_{3\ell}^2$	$[+2.399 \rightarrow +2.593]$
10^{-3} eV^2	$[-2.536 \rightarrow -2.395]$

$$\left| \boldsymbol{v}_{\alpha} \right\rangle = \sum_{k=1}^{3} \boldsymbol{U}_{\alpha k}^{*} \left| \boldsymbol{v}_{k} \right\rangle$$

In 2 flavor:

$$\psi = \left(\cos^2 \theta e^{-i(E_1 t - \vec{p_1} \cdot \vec{x})} + \sin^2 \theta e^{-i(E_2 t - \vec{p_2} \cdot \vec{x})}\right) \nu_e - \left(\cos \theta \sin \theta \left(e^{-i(E_1 t - \vec{p_1} \cdot \vec{x})} - e^{-i(E_2 t - \vec{p_2} \cdot \vec{x})}\right)\right) \nu_\mu.$$

$$P(\nu_e \to \nu_\mu) = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E_\nu}\right)$$

SNO and KamLand experiments

THE 3 flavor OSCILLATIONS

Oscillation probabilities

$$P\left(\nu_{e} \to \nu_{e}\right) = 1 - 4\left|U_{e1}\right|^{2}\left|U_{e2}\right|^{2}\sin^{2}\left(\frac{\Delta m_{21}^{2}\ L}{4E_{\nu}}\right) + \\ -4\left|U_{e1}\right|^{2}\left|U_{e3}\right|^{2}\sin^{2}\left(\frac{\Delta m_{31}^{2}\ L}{4E_{\nu}}\right) - 4\left|U_{e2}\right|^{2}\left|U_{e3}\right|^{2}\sin^{2}\left(\frac{\Delta m_{32}^{2}\ L}{4E_{\nu}}\right) \\ \left|\Delta m_{32}^{2}\right| \simeq \left|\Delta m_{31}^{2}\right| \gg \left|\Delta m_{21}^{2}\right| \\ P\left(\nu_{e} \to \nu_{e}\right) \simeq 1 - \cos^{4}\left(\theta_{13}\right)\sin^{2}\left(2\theta_{12}\right)\sin^{2}\left(\frac{\Delta m_{21}^{2}\ L}{4E_{\nu}}\right) - \sin^{2}\left(2\theta_{13}\right)\sin^{2}\left(\frac{\Delta m_{32}^{2}\ L}{4E_{\nu}}\right) \\ - \sin^{2}\left(2\theta_{13}\right)\sin^{2}\left(\frac{\Delta m_{32}^{2}\ L$$

• SOLAR DATA on v_e Δm_{12}^2

• ATMOSPHERIC DATA on ν_{μ} $\Delta m_{~32}^2$

Each experiment is sensitive to a L/E region

• REACTOR and ACCELERATOR experiments for the matrix elements (mixing angles): θ_{13}

If L/E >10 km/MeV

If $L/E \approx 1-2 \text{ km/MeV}$

THE ANOMALIES

3 flavor standard oscillations does not occur at short baseline!

the anomalies at short baseline:

GalleX, SAGE

1.9 m - 0.6 m

Reactors

10 -100 m

> LSND

30 m

MiniBoone

540 m

 $-\frac{\nu_{\mu} \rightarrow \nu_{e}}{\lambda_{e}}$ Appearance

ν_e Deficit

cannot be explained by the same matrix

- This time the neutrino must be sterile (not week interaction)
- The PNMS matrix is not unitary !?

THE NEW HYPOTHESIS

Which experimental tests?

The new matrix 3+n x 3+n

The Short Base Line approximation

no oscillations due to the standard 3 flavor

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$

P depends only on the terms $U_{\alpha i}$ Δm_{i1}^2 with $i \ge 4$.

The
$$\nu_e$$
 DISAPP

The
$$v_e$$
 DISAPP $P_{ee}^{\mathrm{SBL},3+1} = 1 - 4|U_{e4}|^2(1 - |U_{e4}|^2)\sin^2\frac{\Delta m_{41}^2L}{4E} = 1 - \sin^2 2\theta_{ee}\sin^2\frac{\Delta m_{41}^2L}{4E}$

The
$$\nu_{\mu}$$
 DISAPP

The
$$\nu_{\mu}$$
 DISAPP $P_{\mu\mu}^{\mathrm{SBL},3+1} = 1 - 4|U_{\mu 4}|^2(1 - |U_{\mu 4}|^2)\sin^2\frac{\Delta m_{41}^2L}{4E} = 1 - \sin^2 2\theta_{\mu\mu}\sin^2\frac{\Delta m_{41}^2L}{4E}$

The
$$\nu_{\mu} \rightarrow \nu_{e} APP$$

The
$$\nu_{\mu} \rightarrow \nu_{e} \text{APP}$$
 $P_{(\overline{\nu})_{\mu} \rightarrow (\overline{\nu})_{e}}^{\text{SBL},3+1} = 4|U_{\mu 4}U_{e 4}|^{2} \sin^{2} \frac{\Delta m_{41}^{2}L}{4E} = \sin^{2} 2\theta_{\mu e} \sin^{2} \frac{\Delta m_{41}^{2}L}{4E}$

The Long Base Line approximation

the effect of the sterile neutrino can be seen as a global flux reduction

$$P_{\nu_{\alpha} \to \nu_{\alpha}}^{\text{LBL},3+2} = \left(1 - \sum_{i=3}^{5} |U_{\alpha i}|^2\right)^2 + \sum_{i=3}^{5} |U_{\alpha i}|^4 + 2\left(1 - \sum_{i=3}^{5} |U_{\alpha i}|^2\right) |U_{\alpha 3}|^2 \cos(2\phi_{31}) \qquad \phi_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E}$$

ν_e DISAPPEARANCE: the radioactive source experiments

Radioactive source ⁵¹Cr ³⁷Ar in GALLEX and SAGE detectors

1991-1997

$$\nu_e + {}^{71}\mathrm{Ga} \rightarrow {}^{71}\mathrm{Ge} + e^-$$

The cross section changed during the years!

From Bahlcall cross section

$$\sigma_{\rm B}(^{51}{\rm Cr}) = 58.1 \times 10^{-46} \,{\rm cm}^2$$

 $\sigma_{\rm B}(^{37}{\rm Ar}) = 70.0 \times 10^{-46} \,{\rm cm}^2$

The ratio between observed and expected events

The values depend on the cross section

	G1	G2	S1	S2	AVE
$R_{\rm B}$	$0.95^{+0.11}_{-0.11}$ $0.85^{+0.12}_{-0.12}$	$0.81_{-0.11}^{+0.10} \\ 0.71_{-0.11}^{+0.11} \\ 0.79_{-0.11}^{+0.10}$	$0.95^{+0.12}_{-0.12}$ $0.84^{+0.13}_{-0.12}$ $0.93^{+0.11}_{-0.12}$	$0.79^{+0.08}_{-0.08}$ $0.71^{+0.09}_{-0.09}$	$0.86^{+0.05}_{-0.05}$ $0.77^{+0.08}_{-0.08}$
$R_{\rm HK}$	$0.85^{+0.12}_{-0.12}$	$0.71^{+0.11}_{-0.11}$	$0.84^{+0.13}_{-0.12}$	$0.71^{+0.09}_{-0.09}$	$0.77^{+0.08}_{-0.08}$
$R_{\rm FF}$	$0.85_{-0.12}^{+0.12}$ $0.93_{-0.11}^{+0.11}$	$0.79^{+0.10}_{-0.11}$	$0.93^{+0.11}_{-0.12}$	$0.71_{-0.09}^{+0.09}$ $0.77_{-0.07}^{+0.09}$	$0.77_{-0.08}$ $0.84_{-0.05}^{+0.05}$
R_{HF}	$0.83^{+0.13}_{-0.11}$	$0.71^{+0.11}_{-0.11}$	$0.83^{+0.13}_{-0.12}$	$0.69^{+0.10}_{-0.09}$	$0.75^{+0.09}_{-0.07}$

to larger cross section

$$\sigma = \sigma_{\rm gs} \left(1 + \xi_{175} \frac{\rm BGT_{175}}{\rm BGT_{\rm gs}} + \xi_{500} \frac{\rm BGT_{500}}{\rm BGT_{\rm gs}} \right)$$

with
$$\sigma_{\rm gs}(^{51}{\rm Cr}) = 55.3 \times 10^{-46} \, {\rm cm}^2$$

 $\sigma_{\rm gs}(^{37}{\rm Ar}) = 66.2 \times 10^{-46} \, {\rm cm}^2$

ν_e DISAPPEARANCE: the radioactive source experiments

The final results

GALLEX:
$$\begin{cases} R_1(Cr) = 0.94 \pm 0.11 \\ R_2(Cr) = 0.80 \pm 0.10 \end{cases}$$

SAGE:
$$\begin{cases} R_3(\text{Cr}) = 0.93 \pm 0.12 \\ R_4(\text{Ar}) = 0.77 \pm 0.08 \end{cases}$$

Fitting the 4 values with the same flux:

$$r_{\min} = 0.84^{+0.054}_{-0.051}$$
,

$$r_{\min} = 0.84^{+0.054}_{-0.051}, \qquad \Delta \chi^2_{r=1} = 8.72 \quad (2.95\sigma)$$

Many experiments observing \overline{v}_e from reactor at short distance: E \rightarrow few MeV and L < 100 m

Reactor code for flux estimation

First generation: Bugey and others observed a ratio smaller than 1

Independent on the flux
Near/Far detector comparison!
New codes for fluxes for distinguish
the isotope
New analysis fixed and free flux
New results in the future
PROSPECT- STEREO

Fission reactors release about $10^{20} \, \rm v_e \, GW \, s^{-1}$ from beta decay of fission product $^{235}\rm U$, $^{239}\rm Pu$, $^{241}\rm Pu$ and $^{238}\rm U$

The emitted antineutrino spectra is

$$S_{\text{tot}}(E_{\nu}) = \sum_{k} f_k S_k(E_{\nu})$$

summed on the fuel composition (different for each experiment!)

First generation results...

... and combined fit

NO visible dependence on L \rightarrow $\Delta m^2 > \sim 1 \text{ eV}^2$

28-6-2018

The neutrino flux uncertainties is not included in the bars

	Δm_{41}^2	Δm_{51}^2	θ_{14}	θ_{15}	$\chi^2_{\rm min} ({ m GOF})$	$\Delta\chi^2_{3+1}$ (CL)	$\Delta \chi^2_{\text{no-osc}}$ (CL)
SBLR	0.46	0.87	0.12	0.13	53.0/(76-4) (95%)	5.3~(93%)	14.3 (99.3%)
SBLR+gal	0.46	0.87	0.12	0.14	60.2/(80-4) (90%)	3.8 (85%)	17.8 (99.9%)

Second generation experiments: results independent on the neutrino flux

DANSS movable detector at L=10.7 m and L=12.7 m

$$\Delta m_{41}^2 = 1.32 \text{ eV}^2, \sin^2 \theta_{14} = 0.012 \text{ for DANSS}$$

NEOS normalized to Daya-Bay flux

No oscillation hypothesis discarded at 3.3 σ in the free flux analysis (free normalization of the 4 main comp.) and at 3.5 σ in the fixed flux analysis

Second era experiments: flux composition study

2016-2017

RENO Daya Bay Double CHOOZ: observed a bump at 5 MeV

It is not due to sterile neutrino
It is a flux feature suggesting that the flux is not completely understood!

Daya-Bay:

by using **the time evolution** of the observed reactor **anti-neutrino spectra** and the known evolution of the reactor **fuel composition**

measurements of **the individual neutrino fluxes** from the two most important fissible isotopes ²³⁵U and ²³⁹Pu

- The anomaly stems mainly from ²³⁵U and not for ²³⁹Pu
- the hypothesis no-oscillation and free neutrino flux normalization is preferred at 2.7 σ versus the flux prediction and sterile neutrino hypothesis
 - → small tension with the global reactor data!

v_e DISAPPEARANCE: all reactor experiments

- Old and new reactor anomaly quite in agreement
- Tension between DANS NEOS and Daya Bay data
- The conclusion does not depend on the flux

The sterile neutrino hypothesis became less strong but it is not excluded!

ν_e DISAPPEARANCE: other constrains

Solar neutrinos:

• v_e survival probability

Neutral Current data

constrain on U_{e4} (θ_{24} and $\,\theta_{34}$)

sensible to $v_x \rightarrow v_s$ oscillation

both the sterile neutrino and the θ_{13} oscillation results in a global flux reduction

 Δm^2_{21} Δm^2_{31} fixed

complementarity between short baseline and Long BaseLine θ_{13} is not dependent on the sterile oscillation and can be fixed!

ν_e DISAPPEARANCE: the GLOBAL ANALYSIS

Gallex + Reactor + Solar

Analysis	$\Delta m_{41}^2 \; [\mathrm{eV^2}]$	$ U_{e4}^{2} $	$\chi^2_{\rm min}/{ m dof}$	$\Delta \chi^2$ (no-osc)	significance
DANSS+NEOS	1.3	0.00964	74.4/(84-2)	13.6	3.3σ
all reactor (flux-free)	1.3	0.00887	185.8/(233-5)	11.5	2.9σ
all reactor (flux-fixed)	1.3	0.00964	196.0/(233 - 3)	15.5	3.5σ
$\stackrel{\scriptscriptstyle(-)}{\nu}_e$ disap. (flux-free)	1.3	0.00901	542.9/(594 - 8)	13.4	3.2σ
$\stackrel{\scriptscriptstyle(-)}{\nu}_e$ disap. (flux-fixed)	1.3	0.0102	552.8/(594 - 6)	17.5	3.8σ

An hint for the sterile exists!

ν_{μ} DISAPPEARANCE: introduction

$$P_{\mu\mu}^{\mathrm{SBL},3+1} = 1 - 4|U_{\mu 4}|^2(1 - |U_{\mu 4}|^2)\sin^2\frac{\Delta m_{41}^2 L}{4E} = 1 - \sin^2 2\theta_{\mu\mu}\sin^2\frac{\Delta m_{41}^2 L}{4E}$$

Accelerator neutrino:

 \rightarrow MINOS and MINOS+ comparison between FAR and NEAR in both the Charge Current $~U_{\mu4}$ and Neutral Current $~U_{\tau4}$

Short and Long Base Line!

→ MiniBoone

Short base Line

Atmospheric neutrino:

→ Super-Kamiokande

The sterile neutrino influence the normalization effect on $P_{\mu\mu}$ survival $U_{\mu4}$ but the e events and mu events have a correlated error...

Long Base Line!

→ IceCube

with matter effect: independent on $U_{\mu4}$

ν_μ DISAPPEARANCE: MINOS and MINOS+

Ratio between far and near spectrum

MINOS and MINOS+ 7 GeV

(energy higher than the maximal disappearance of 3 flavor)

- the sterile-driven oscillations are seen as an energy-dependent modification to the FD spectra
- the oscillation have a wavelength comparable to or shorter than the energy resolution of the detector so are seen as a **deficit in the event rate**, constant in energy
- oscillations occur in the ND along with rapid oscillations averaging in the FD

Near: 1 Km

 $\Delta m_{41}^2 \sim 1\text{--}100 \text{ eV}^2$

Far: 735 km

 $\Delta m_{41}^2 \sim 10^{-3} - 10^{-1} \text{ eV}^2$

The oscillation pattern could be observed

Two data sets: CC channel and NC channel

ν_{ιι} DISAPPEARANCE: MINOS and MINOS+ data

ν_{II} DISAPPEARANCE: MINOS and MINOS+

Charge current

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \sin^2 2\theta_{23} \cos 2\theta_{24} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)$$
$$-\sin^2 2\theta_{24} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right).$$

constrain on θ_{24}

Neutral current

$$\begin{split} P_{\rm NC} &= 1 - P \left(\nu_{\mu} \to \nu_{s} \right) \\ &\approx 1 - \cos^{4} \theta_{14} \cos^{2} \theta_{34} \sin^{2} 2\theta_{24} \sin^{2} \left(\frac{\Delta m_{41}^{2} L}{4E} \right) \\ &- \sin^{2} \theta_{34} \sin^{2} 2\theta_{23} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E} \right) \\ &+ \frac{1}{2} \sin \delta_{24} \sin \theta_{24} \sin 2\theta_{34} \sin 2\theta_{23} \sin \left(\frac{\Delta m_{31}^{2} L}{2E} \right) \end{split}$$

constrain on $\theta_{\bf 34}$ ($U_{\tau 4}$)

ν_{...} DISAPPEARANCE: MiniBoone data

L=541 m from proton target (BNB)

E= 200-1600 MeV

Energy resolution 11%

In neutrino and antineutrino modes

The dominant systematics:

- CC- 1π background contamination
- the neutrino flux (production of pions from p-Be interactions)
- CCQE cross section uncertainties

ν_{ιι} DISAPPEARANCE: IceCube

Active-sterile neutrino enhanced by MSW effect in matter:

resonance at TeV high energy atmospheric neutrino IceCube

MSW effect: $v_e \rightarrow v_s$ oscillations in matter where the mass eigenstates are different

The resonance condition depends on the sign of Δm^2 , density of the medium and

neutrino energy

For instance for solar neutrino

$$E > \frac{\delta m^2 \cos 2\theta_{12}}{2\sqrt{2}G_E N_0} \approx \frac{\delta m^2 \cos 2\theta_{12}}{1.5 \times 10^{-11} \text{ eV}} \approx 2 \text{ MeV}.$$

$ν_μ$ DISAPPEARANCE: global analyis

IceCube searches for a maximal oscillation at TeV energies

2017

$$E_{\rm res} = 5.3 \ {\rm TeV} \times \left(\frac{5 \ {\rm g/cm^3}}{\rho_{\oplus}}\right) \left(\frac{\Delta m_{41}^2}{1 \ {\rm eV}^2}\right)$$

$$\Delta E_{\rm res} \sim \frac{\Delta m_{41}^2 \sin^2 2\theta_{24}}{2V_{\rm MSW}}$$

small resonance width

If $\Delta m_{41}^2 > 0$ the resonance is expected in the antineutrino mode

The effect was not observed BUT how much is the sensitivity?

- IceCube cannot distinguish on an event-by event basis the neutrino/antineutrino
- Systematic uncertainties

Super-Kamiokande and DeepCore for v_{μ} at GeV energies:

Constrains:

- on $U_{\mu4}$ as global suppression of $P_{\mu\mu}$
- on $U_{\tau 4}$ zenith dependence of $P_{\mu\mu}$

CONSTRAIN ON $U_{\tau 4}$

 $U_{\tau 4}$ controls the weight of the oscillation between $\nu_{\mu}
ightarrow \nu_{\tau}$ and $\nu_{\mu}
ightarrow \nu_{s}$ at the atmospheric scale

$$\begin{split} P_{\rm NC} &= 1 - P \left(\nu_{\mu} \to \nu_{s} \right) \\ &\approx 1 - \cos^{4} \theta_{14} \cos^{2} \theta_{34} \sin^{2} 2\theta_{24} \sin^{2} \left(\frac{\Delta m_{41}^{2} L}{4E} \right) \\ &- \sin^{2} \theta_{34} \sin^{2} 2\theta_{23} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E} \right) \\ &+ \frac{1}{2} \sin \delta_{24} \sin \theta_{24} \sin 2\theta_{34} \sin 2\theta_{23} \sin \left(\frac{\Delta m_{31}^{2} L}{2E} \right) \end{split} \tag{2}$$

- from solar neutrino matter effect SNO
- from MINOS+ NC
- from atmospheric neutrino from neutral current

from atmospheric neutrino

$$|U_{\tau 4}|^2 < 0.13 (0.17)$$
 at 90% (99%) CL.

$ν_μ$ DISAPPEARANCE: global analyis

No anomaly was observed!

From direct searches (MINOS an MiniBoone) and from indirect searches a big space of parameters is excluded!

$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ APPEARANCE: LSND

Liquid Scintillator Neutrino Detector searching for ν_e / $\overline{\nu_e}$

1993-1998

$$\stackrel{-}{\nu_e p} \rightarrow \stackrel{-}{e^+} n$$
 cross section well known

$$P_{(\overrightarrow{\nu}_{\mu} \to (\overrightarrow{\nu}_{e})}^{\mathrm{SBL},3+1} = 4|U_{\mu 4}U_{e 4}|^{2} \sin^{2} \frac{\Delta m_{41}^{2}L}{4E} = \sin^{2} 2\theta_{\mu e} \sin^{2} \frac{\Delta m_{41}^{2}L}{4E}$$

$\nu_{\parallel} \rightarrow \nu_{e}$ APPEARANCE: MiniBoone

MiniBoone: L=541 m E=0.5 GeV from Booster Neutrino Beam at Fermilab

Detector:

12 m diameter sphere filled with 818 tons of pure mineral oil (CH2) and 1520 8-inch PMTs) directed Cherenkov light and isotropic scintillation light

15 years of data acquisition

Beam stability at 2% CCQE events

Energy range 200 MeV< Ev < 1250 MeV

$\nu_{\parallel} \rightarrow \nu_{e}$ APPEARANCE: MiniBoone

Particle identification

thanks to the Cherenkov light

- **Background from:**
- v_e from K+
- v_e from muon decay in 50 m
- External event background
- NC π^0 reconstructed as v_e
- NC -> Δ γ
- Wrong sign neutrino

Example v_e appearance signal and background

- Neutral-current events typically background events
- no way to tag the neutrino flavor

- Charged-current events typically signal events
- Can use out-going lepton to tag neutrino flavor

No identification between electron and photon

$\nu_{\mu} \rightarrow \nu_{e}$ APPEARANCE: MiniBoone

MC studies

Data selection:

$\nu_{\parallel} \rightarrow \nu_{e}$ APPEARANCE: MiniBoone

Latest results:

both in neutrino and antineutrino mode

	POT	Excess	significance
Neutrino	12.84×10^{20}	381.2 ± 85.2	4.8
Antineutrino	11.27×10^{20}	79.3 ± 28.6	4.5
Combined			6.1

excess of v_e / v_e is observed!

$\nu_{\mu} \rightarrow \nu_{e}$ APPEARANCE: LNSD and MiniBoone

Comparison with LNSD

the two experiments have different neutrino energies, neutrino fluxes, reconstruction algorithm, backgrounds and systematic uncertainties.

The significance of the combined LSND (3.8 σ) and MiniBooNE (4.8 σ) excesses is 6.1 σ

$\nu_{\mu} \rightarrow \nu_{e}$ APPEARANCE: new global fit

Allowed regions

The big value for $\sin^2(2\theta)$ suggest that 3+1 is not the right scenario

$\nu_{\text{u}} \rightarrow \nu_{\text{e}}$ APPEARANCE: OPERA

OPERA experiment is based on nuclear emulsion detector

Long baseline experiment for $v_{\mu} \rightarrow v_{\tau}$

E= 20 GeV from CNGS beam

L = 730 km

Sensitivity for $\Delta m^2 > 0.01 \text{ eV}^2$

For sterile neutrino analysis: ν_e from CC

The statistic is low but no excess was observed

2012

COMBINIG ALL TOGETHER

Both probe to the same range of Δm_{14}^2 , but at different mixing angle

COMBINIG ALL TOGETHER

ν_{μ} DISAPPEARANCE

The sterile neutrino cannot explain all channels together!?

no anomaly is found in any disappearance data set

THE GLOBAL ANALYSIS

Combining all together...

Analysis	$\Delta m^2_{41} \ [\mathrm{eV^2}]$	$ U_{e4} $	$ U_{\mu 4} $	$\chi^2_{\rm min}/{\rm dof}$	GOF	χ^2_{PG}	PG
appearance (DaR)	0.573	$4 U_{e4} ^2U$	$ \mu_4 ^2 = 6.97 \times 10^{-3}$	89.8/67	3.3%		
appearance (DiF)	0.559	$4 U_{e4} ^2U$	$ \mu_4 ^2 = 6.31 \times 10^{-3}$	79.1/-			
$(\overline{\nu})_{\mu}$ disapp	2×10^{-3}	0.12	$\bigcirc 0.039$	468.9/497	81%		
Reactor fluxes fi	xed at pred	icted va	$lue \pm quoted unc$	ertainties			
$(\overline{\nu})_e$ disapp	1.3	0.1	_	552.8/588	85%		
Global (DiF)	6.03	0.2	0.1	1127/-		25.7	2.6×10^{-6}
Global (DaR)	5.99	0.21	0.12	1141/1159	64%	28.9	5.3×10^{-7}
Reactor fluxes floating freely							
$(\overline{\nu})_e$ disapp	1.3	0.095	_	542.9/586	90%		
Global (DiF)	6.1	0.20	0.10	1121/-		29.6	3.7×10^{-7}
Global (DaR)	6.0	0.22	0.11	1134/1157	68%	32.1	1.1×10^{-7}

There is a strong tension

The tension does not depend on:

DaR or DIF events for LNSD

Free or fixed flux for reactor experiments

sterile neutrino models fail to simultaneously account for all channels and data set!...This is robust!

THE GLOBAL ANALYSIS: conclusions

Is there any chance to reconcile?

- Each of these anomalies can be individually explained by sterile neutrinos
- sterile neutrinos still succeed in simultaneously explaining groups of anomalies
 sharing the same oscillation channel
- The sterile neutrino for the ν_e channel is not completely excluded
- The sterile neutrino as explanation for the appearance is excluded at 4.7 σ level or it is background or it is new physics!!

Analysis	$\chi^2_{\rm min,global}$	$\chi^2_{\rm min,app}$	$\Delta \chi^2_{\rm app}$	$\chi^2_{\rm min, disapp}$	$\Delta \chi^2_{\text{disapp}}$	$\chi^2_{\rm PG}/{\rm dof}$	PG		
Global	1120.9	79.1	11.9	1012.2	17.7	29.6/2	3.71×10^{-7}		
Removing anomalous	data sets								
w/o LSND	1099.2	86.8	12.8	1012.2	0.1	12.9/2	1.6×10^{-3}		
w/o MiniBooNE	1012.2	40.7	8.3	947.2	16.1	24.4/2	5.2×10^{-6}		
w/o reactors	925.1	79.1	12.2	833.8	8.1	20.3/2	3.8×10^{-5}		
w/o gallium	1116.0	79.1	13.8	1003.1	20.1	33.9/2	4.4×10^{-8}		
Removing constraints	3								
w/o IceCube	920.8	79.1	11.9	812.4	17.5	29.4/2	4.2×10^{-7}		
w/o MINOS(+)	1052.1	79.1	15.6	948.6	8.94	24.5/2	4.7×10^{-6}		
w/o MB disapp	1054.9	79.1	14.7	947.2	13.9	28.7/2	6.0×10^{-7}		
w/o CDHS	1104.8	79.1	11.9	997.5	16.3	28.2/2	7.5×10^{-7}		
Removing classes of o	Removing classes of data								
$(\overline{\nu})_e$ dis vs app	628.6	79.1	0.8	542.9	5.8	6.6/2	3.6×10^{-2}		
$\stackrel{(-)}{\nu}_{\mu}$ dis vs app	564.7	79.1	12.0	468.9	4.7	16.7/2	2.3×10^{-4}		
$\stackrel{(\overline{\nu})}{\nu}_{\mu}$ dis + solar vs app	884.4	79.1	13.9	781.7	9.7	23.6/2	7.4×10^{-6}		
ν _μ dis + solar vs app	004.4	19.1	13.9	101.1	9.1	23.0/2	7.4 × 10		

MORE STERILE NEUTRINOS?

With 1 sterile neutrino

$$P_{\mu e}^{4\nu} = 4|U_{e4}|^2|U_{\mu 4}|^2\sin^2\phi_{41}$$

for large energy $P_{\mu e}^{4\nu}$ drops as $1/E^2$

The MiniBoone excess is sharper! $(1/E^2)$

➤ with 2 sterile neutrino a better description of the MiniBoone low energy data can be achieved

BUT the same APP/DIS tension is not solved!!

quadratic suppression of the $v_{\mu} \rightarrow v_{e}$ oscillation amplitudes by constraints on the elements Uei and $U\mu i$ ($i \ge 4$) from disappearance data remains equally true in scenarios with more than one eV-scale mass states.

3+ N do no present substantial advantages over the 3+1 model

DO NOT FORGET THE COSMOLOGY

Limits:

on number of neutrino species

- If thermalized in the early Universe they contribute Neff (the number of relativistic degrees of freedom)
- There might be some hints for additional species coming mainly from CMB data. Depending on which additional cosmological data are used, Neff values ranging from $3.30^{+0.54}_{-0.51}$ to $3.62^{+0.50}_{-0.48}$ (95% CL)
- Constraints from Big Bang Nucleosynthesis on Neff.

on neutrino mass

- The sterile neutrino might give a large contribution to the sum of neutrino masses,
 which is constrained to be below around 0.5 eV.
- From galaxy clustering and structure formation and from Cosmic Microwave Background disfavor >0.3 eV!
- However how far one would need to deviate from the ΛCDM model in order to accommodate the sterile neutrino at eV scale remains under discussion

THE SHORT BASE LINE PROGRAM AT Fermilab

Short Baseline Far detector Icarus 760 ton LAr

Intermediate detector
MicroBoone 170 ton LAr
investigate the low energy excess events,
measure a suite of low energy neutrino
cross section.

MicroBoone, 1,32e+21 POT (470m)
Single (on = 0.04 a) V 3, sin 20 = 0.013 (or = 0.04)

Short Baseline Near detector (SBND)

SBND is a **112 ton** active volume liquid argon time projection chamber(LArTPC).

The detector is currently in the design phase and shortly it will be ready to run.

THE SHORT BASE LINE PROGRAM AT Fermilab

For clarifying both the **appearance** and the **disappearance** channels!

OTHER EXPERIMENTS

SOLID and CHANDLER experiments

New detectors

new segmented detector: optically isolated cubes readout by fibers

for more energy resolution and better background rejection

and reactor (BR2) with a **compact core** (~50 cm)

New sources

IsoDAR

Cyclotron proton beam to continuously produce 8 Li which decay beta producing $\overline{\nu}_e$

nuSTORM

for producing a well characterized beam of v_{μ} and \overline{v}_{e} (or \overline{v}_{μ} and v_{e})

It is very difficult to produce a kCi artificial source

Our SOX would have been important!

CONCLUSIONS

 v_e disappearance experimental data suggest $\Delta m_{41}^2 \approx 1.3 \text{ eV}^2$ and $|U_{e4}| \approx 0.1$

3σ level

 v_{μ} disappearance experimental results are strong in tension with the $v_{\mu} \rightarrow v_{e}$ appearance results: here the sterile neutrino hypothesis can be discarded

4.5 σ level

If all these results are confirmed: new physics is necessary

BUT new experimental results are necessary and ...

...THE STORY CONTINUES!

