

Studio del background dell'esperimento SABRE

Giulia D'Imperio

Mini-incontro di Sezione su tecniche sperimentali di rivelazione diretta di DM, Università di Roma, La Sapienza 26/06/2018

Dark matter through annual modulation

- About 85% of matter in the Universe is "dark"
- WIMPs (Weakly Interacting Massive Particles) are promising candidates for dark matter
- Direct detection principle: dark matter scattering off detector nuclei
- Annual modulation of the count rate is a model independent signature
 - period 1 year Ο
 - maximum of modulation around June 2nd Ο

Expected rate in an Earth-based detector

$$R \approx S_0 + S_m \cos(\frac{2\pi}{1\text{yr}}(t - t_0))$$

arXiv:1805.10486

DAMA background ~1 cpd/kg/keV Modulation significance 11.9 C.L.

2

Sodium-iodide with Active Background REjection

1. Development of ultra-high purity Nal(TI) crystals

- High purity Nal powder
- Clean crystal growth method

2. Low energy threshold

• High QE Hamamatsu PMTs directly coupled to the crystal

3. Passive shielding + active veto

• Unprecedented background rejection and sensitivity with a Nal(TI) experiment

4. Two identical detectors in northern and southern hemispheres

- seasonal backgrounds have opposite phase in northern and southern hemispheres
- dark matter signal has same phase

The SABRE Proof-of-Principle

Goals:

- Test active veto performance
- Fully characterize the intrinsic and cosmogenic backgrounds

Layout:

- 1 Nal(TI) crystal (~5 kg)
- Crystal and PMTs will be coupled directly with optical coupling gel and sealed into a highly radiopure copper enclosure
- Active veto:
 - Cylindrical vessel ($\emptyset \times h$) = (1.4 m x 1.5 m)
 - PC+PPO (3g/l) scintillator (mass \approx 2 ton)
 - 10 Hamamatsu R5912-100 PMTs
- External shielding: combination of lead, polyethylene and water, sealed and filled with nitrogen

Status of the SABRE Proof-of-Principle @ LNGS

- Shielding and vessel mounted in Hall C
- 5 kg crystal in Princeton, will be put in the enclosure and shipped to LNGS
- SABRE-PoP data taking foreseen in 2018

Background sources

SABRE goal: achieve background of 0.1 cpd/kg/keV and threshold of 1 keV

- Internal: radioactivity from all the setup materials
 - \circ ~ natural radioactivity: ^{238}U and $~^{232}\text{Th}$ decay chains, ^{40}K
 - o cosmogenic: ¹²¹Te, ^{121m}Te, ^{125m}Te, ^{127m}Te, ¹²⁵I, ¹²⁶I, ¹²⁹I, ²²Na, ³H
- **External**: natural radioactivity in LNGS rocks and concrete, muons
 - \circ gammas from $^{238}\text{U},\,^{232}\text{Th}$ and ^{40}K in the rock, muon induced
 - neutrons (radiogenic, muon induced)

The most important sources of background for SABRE are the <u>intrinsic</u> <u>contaminations in the crystals</u>: ⁴⁰K, ⁸⁷Rb, ²³²Th, ²³⁸U

Low background is achieved with:

- High purity crystals
- Active veto: reduces external and internal background (ex. ⁴⁰K in the crystals)

The low background challenge

• Ultra pure Nal(TI) crystals

- Astro Grade powder (Sigma Aldrich)
- clean growth procedure: collaboration between Princeton and RMD, Boston
- test crystal of 2 kg
- \circ full scale crystal (4" diameter, 5 kg) now in Princeton, will be shipped to LNGS

Element	DAMA powder	DAMA crystals	Astro-Grade	SABRE crystal
	[ppb]	[ppb]	[ppb]	[ppb]
K	100	~13	9	9
Rb	n.a.	< 0.35	< 0.2	< 0.1
U	${\sim}0.02$	$0.5 - 7.5 \times 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$
Th	~ 0.02	$0.7 - 10 \times 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$

• A liquid scintillator veto surrounding the Nal detector at 4π allows to reduce

- external backgrounds
- internal backgrounds: ⁴⁰K

⁴⁰K (11% BR) decays
 through electron capture
 to ⁴⁰Ar

- γ 1460 keV
- X-rays, Auger electrons 3 keV

Background simulations with Geant4

How does Geant4 work

Toolkit contains

- physics of particle interaction and transport
- physics data (particle properties, cross sections, radioactive decays, ...)
- materials

User defines:

- detector geometry
- particles to be generated
- scoring of results

Internal Background (radioactivity in the setup materials)

- GEANT4 based code with detailed geometry implementation
 - Crystal
 - **Crystal PMTs**: quartz window + body + feedthrough
 - Enclosure: wrapping, copper enclosure and small components inside
 - Crystal Insertion System (CIS): copper tube, steel bar
 - Veto: steel vessel + liquid scintillator + 10 veto PMTs
 - Shielding: water + polyethylene + steel + lead (only passive)

• GEANT4 v10.2.p03

- Hadronic physics list: Shielding
- EM physics list: G4EmStandardPhysics_option4
- Fluorescence, auger electron emission and particle induced atomic relaxation accounted

• G4EmExtraPhysics

An Example: simulation of ⁴⁰K decay in the SABRE crystal

Lego plot: energy in the crystal vs energy in the liquid scintillator

10

Crystal intrinsic background

- Generate all radioactive decays as explained in slide 11
- For decay chains, generate all the isotopes in the chain
- Normalize each spectrum to counts/day/kg/keV using the activity measured on the SABRE crystal test or powder
- Sum the contributions

Isotope	Rate, veto OFF	Rate, veto ON
	[cpd/kg/keV]	[cpd/kg/keV]
-	Intrinsic	
⁸⁷ Rb	$6.1 \cdot 10^{-2}$	$6.1 \cdot 10^{-2}$
40 K	$2.5 \cdot 10^{-1}$	$4.0 \cdot 10^{-2}$
$^{238}\mathrm{U}$	$2.0 \cdot 10^{-2}$	$2.0 \cdot 10^{-2}$
²¹⁰ Pb	$2.0 \cdot 10^{-2}$	$2.0 \cdot 10^{-2}$
85 Kr	$1.9 \cdot 10^{-3}$	$1.9\cdot 10^{-3}$
232 Th	$1.9 \cdot 10^{-3}$	$1.7\cdot 10^{-3}$
Tot Intrinsic	$3.5 \cdot 10^{-1}$	$1.5 \cdot 10^{-1}$

<u>arXiv:1806.09344</u>

ROI: 2-6 keV

Cosmogenic backgrounds

ACTIVIA Simulation software http://universityofwarwick.github.io/ACTIVIA/

- Uses semi-empirical formulae from Silberberg and Tsao to calculate the isotope production cross section
- Activation Rate depends on the activation cross section and the cosmic ray flux $R \propto \int \phi_x(E) \sigma_x(E) dE$
- CR flux should be corrected for Altitude, Geomagnetic cutoff and solar activity

$$\phi = \phi_0 F_{alt}(d) F_{BSYD}(R_c, d, I)$$

neglected, should have a small effect if the plane does not follow the polar route

 $F_{alt}(0 \text{ m}) = 1$

 $F_{alt}(11.000 \text{ m}) \approx 455$

Summary of crystal activation

Use the following assumptions:

- exposure at sea level for 1 year
- back and forth Italy/USA via plane or ship
- ship does not contribute w.r.t 1 year of previous exposure

lsotope	Half life (days)	Plane (µBq/kg)	Ship (µ Bq/kg)	Ratio plane/ship
³ Н	4500	43	23	1.9
²² Na	949	980	500	2
¹¹³ Sn	115	249	89	2.8
¹²¹ Te	154	1295	475	2.7
¹²⁵	59	5270	1170	4.5

Transportation of crystals by boat can reduce significantly cosmogenic background

Crystal cosmogenic background

Cosmogenic activation assumptions:

- ²²Na and ¹²⁶I measured at LNGS on Astro Grade powder
- ²⁴Na and ¹²⁹I measured from DAMA collaboration on their crystals
- other isotopes measured from ANAIS collaboration on their crystals
- → compatible with ACTIVIA simulations for crystals that flew from US

ROI: 2-6 keV

Rate, veto OFF	Rate, veto ON			
[cpd/kg/keV]	[cpd/kg/keV]			
Cosmogenic				
$2.6 \cdot 10^{-1}$	$3.3 \cdot 10^{-2}$			
$3.6 \cdot 10^{-2}$	$2.7 \cdot 10^{-3}$			
$1.8 \cdot 10^{-3}$	$1.8 \cdot 10^{-3}$			
$3.4 \cdot 10^{-4}$	$3.4 \cdot 10^{-4}$			
$2.0 \cdot 10^{-4}$	$1.3 \cdot 10^{-4}$			
$1.3 \cdot 10^{-4}$	$7.0 \cdot 10^{-5}$			
$7.6 \cdot 10^{-5}$	$5.1 \cdot 10^{-5}$			
$5.0 \cdot 10^{-5}$	$4.9 \cdot 10^{-5}$			
$5.3 \cdot 10^{-6}$	$5.1 \cdot 10^{-6}$			
-				
$3.0 \cdot 10^{-1}$	$3.9 \cdot 10^{-2}$			
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			

<u>arXiv:1806.09344</u>

Total internal backgrounds

Summary of the total internal backgrounds

Veto on: E(Scint) < 100 keV

ROI: 2-6 keV

	Rate, veto OFF	Rate, veto ON
	[cpd/kg/keV]	[cpd/kg/keV]
Crystal	$3.5 \cdot 10^{-1}$	$1.5 \cdot 10^{-1}$
Crystal Cosmogenic	$3.0 \cdot 10^{-1}$	$3.9 \cdot 10^{-2}$
Crystal PMTs	$4.3 \cdot 10^{-2}$	$3.5 \cdot 10^{-2}$
Enclosure	$9.5\cdot10^{-3}$	$3.6 \cdot 10^{-3}$
Veto	$3.0 \cdot 10^{-2}$	$5.7 \cdot 10^{-4}$
CIS	$3.7\cdot10^{-3}$	$4.6 \cdot 10^{-4}$
Total	$7.4 \cdot 10^{-1}$	$2.2 \cdot 10^{-1}$

- Veto rejection is ~70%
- Total background 0.22 cpd/kg/keV,
 5 times lower than DAMA background
- Highest contribution from Rb in the crystal, but we used the the upper limit contamination

External gamma background

External background in Hall B and Hall C of LNGS has been measured with a standard grade Nal(TI) crystal.

→ Use Monte Carlo to deconvolve the spectrum and obtain U, Th and K contamination in the rocks

External gamma background

• Values obtained from deconvolution of experimental spectrum

	Hall B [ppm]	Hall C [ppm]
К	7068 ± 90	12780 ± 70
U	0.56 ± 0.01	0.966 ± 0.004
Th	0.54 ± 0.01	0.840 ± 0.006

In agreement with values in literature (H. Wulandari et al. Astroparticle Physics 22 (2004) 313–322)

• Simulation of U, Th and K in the LNGS rocks and propagate in SABRE geometry

	Rate in [2-6] keV [cpd/kg/keV]
Gamma Hall B	< 4.0 10 ⁻³ (99% CL)
Gamma Hall C	< 5.4 10 ⁻³ (99% CL)
Total internal	0.22

Gamma external background including shielding and veto effect is O(100) lower than internal backgrounds

 Preliminary study on radiogenic neutrons show that the contribution is ~10⁻⁴ cpd/kg/keV in the signal region; muon background not yet studied.

Background using a crystal array (full scale detector)

- 7 + 7 crystal array

	Bkg single-hit & veto-on crystal array [cpd/kg/keV]	Bkg veto-on SABRE-PoP [cpd/kg/keV]	Ratio array/PoP [cpd/kg/keV]
Crystal	1.35 10 ⁻¹	1.45 10 ⁻¹	0.93
PMT quartz	1.07 10 ⁻²	1.12 10 ⁻²	0.95
Enclosure	2.38 10 ⁻³	1.93 10 ⁻³	1.23
Total	1.48 10 ⁻¹	1.58 10 ⁻¹	0.93

- All the internal backgrounds are of the same order of magnitude in the single-crystal and crystal array geometry

Conclusions

- The SABRE activity in Roma strongly focused on the Monte Carlo simulations of the background (<u>arXiv:1806.09344</u>)
- Guide the design of the experiment towards minimizing the background
- Will serve as a tool for interpreting the real background when experimental data become available
- According to the simulations we expect a background of ~0.22 cpd/kg/keV in the PoP
 - similar for the full scale experiment
- With 50 kg of Nal and 3 years of data taking we expect to confirm (refute) the presence of an annual modulation signal with the amplitude observed by DAMA at 6 (5) sigma (<u>arXiv:1806.09340</u>).

Backup slides

Radioactive decays in GEANT4

Decay library based on ENSDF database: half life, decay modes, branching ratios <u>https://www.nndc.bnl.gov/ensdf/</u>

- Decay an unstable nucleus
 - Sample discrete decay emission: alpha, neutrinos (EC)
 - Sample continuous decay emission: Beta-Fermi-function (e, neutrinos)
 - Generate daughter nucleus
 - Take care of kinematics: energy- and momentum conservation
- Deexcite daughter nucleus
 - Sample gamma, X-rays and conversion electrons resulting from nuclear deexcitation
 - Sample fluorescence and Auger-electrons due to shell vacancies
- Per-decay simulation

The decay products are propagated in the detector according to the physics lists used by the user's simulation

SABRE expected sensitivity

Assuming:

- 3 years exposure
- 50 kg of Nal(TI) crystals
- average background 0.22 cpd/kg/keV in 2-6 keV region
- Quenching factor for Na: $0.13 < Q_{Na} < 0.21$, for I $Q_{I} = 0.09$

The SABRE full scale can:

- Confirm modulation with amplitude observed by DAMA at 6σ
- Refute it at 5σ

arXiv:1806.09340

spin independent
 WIMP-nuclear scattering
 limits as strong as 10⁻⁴² cm²

Background of other Nal experiments

Altitude dependence

A flight from New York to Rome travels for ~8 hours at 11.000 m

$$F_{alt}(d) = \exp\left[\frac{d_{ref}-d}{L_n}\right]$$

- $d_{ref} = 1033.7 \text{ g/cm}^2$ is the atmospheric depth of sea level
- $L_n = 131.3 \text{ g/cm}^2$ is the attenuation length hof neutrons above 10 MeV
- An altitude of 11.000 m corresponds to an atmospheric depth of 230 g/cm²

$$F_{alt}(0 \text{ m}) = 1$$
 $F_{alt}(11.000 \text{ m}) \approx 455$

Geomagnetic and solar correction factors

$$F_{BSYD}(R_c,d,I) = N\left[1-exp\left(rac{-lpha}{R_c^k}
ight)
ight]$$

- R_c is the geomagnetic cutoff
- d is the atmospheric depth
- N is a normalization factor

At solar minimum

 $\alpha = \exp\left[1.84 + 0.094h - 0.09\exp(-11h)\right]$

 $k = 1.4 - 0.56h + 0.24 \exp(-8.8h)$,

At this level this factor has been neglected. It may have a large impact on the results if the plane travels a polar route (not the case for flights from US to Italy).

Radioactivity of materials

arXiv:1806.09344

Crystal

	Intrinsi	c	
Isotope	Activity [mBq/kg]		Ref.
^{40}K	0.31	- 26	14
$^{238}\mathrm{U}$	$< 1.2 \cdot 1$	10^{-2}	14
232 Th	$< 4.1 \cdot 1$	10^{-3}	14
$^{87}\mathrm{Rb}$	$< 8.9 \cdot 1$	10^{-2}	14
$^{210}\mathrm{Pb}$	$< 3.0 \cdot 1$	10^{-2}	24
85 Kr	$< 1.0 \cdot 1$	10^{-2}	$\overline{24}$
	Cosmoge	nic	
Isotope	Activity [mBq/kg]	Half life [days]	Ref.
²² Na	0.80	949	29
^{126}I	4.30	13	29
24 Na	$2.6 \cdot 10^{-4}$	0.625	24
^{129}I	0.95	-	24
121 Te	1.27	17	28
^{125}I	7.20	59	28
121m Te	0.89	154	28
123m Te	1.17	119	28
125m Te	0.92	57	28
127m Te	0.37	107	28

[14] M. Antonello, et al., The SABRE project and the SABRE PoParXiv:1806.09340.

[24] R. Bernabei, et al., *The DAMA/LIBRA apparatus*, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 592 (3) (2008) 297 – 315. doi:http://dx.doi.org/10.1016/j.nima.2008.04.082.

[28] J. Amaré, et al., Cosmogenic radionuclide production in Nal(TI) crystals, JCAP 1502 (02) (2015) 046. arXiv:1411.0106, doi:10.1088/1475-7516/2015/02/046.

[29] M. Laubenstein, HPGe screening at LNGS.

Crystal PMTs Hamamatsu R11065

Isotope	Activity [mBq/PMT]		
	Body	Window	Ceramic plate
^{40}K	< 5.9	< 0.48	6.5
60 Co	0.65	< 0.042	< 0.19
$^{238}\mathrm{U}$	< 0.52	<1.8	13
226 Ra	< 0.29	0.040	0.29
232 Th	< 0.0098	< 0.037	0.70
228 Th	$<\!0.41$	< 0.015	0.13

E. Aprile, et al., Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment, European Physical Journal C 75 (2015) 546. doi:10.1140/epjc/s10052-015-3657-5.

PFTE reflector foil

Isotope	Activity [mBq/kg]
⁴⁰ K	3.1
238 U	0.25
232 Th	0.5

PFTE holders inside enclosure

Isotope	Activity [mBq/kg]
⁴⁰ K	$<\!2.25$
²³⁸ U	< 0.31
232 Th	< 0.16
60 Co	< 0.11
^{137}Cs	< 0.13

E. Aprile, et al., Material screening and selection for XENON100, Astroparticle Physics 35 (2) (2011) 43 – 49. doi:http://dx.doi.org/10.1016/j.astropartphys.2011.06.001.

Radioactivity of materials

arXiv:1806.09344

Copper parts: enclosure, CIS

Isotope	Half life [days]	Activity [mBq/kg]
40 K		0.7
$^{238}\mathrm{U}$		0.065
232 Th		0.002
60 Co	1925	0.340
58 Co	71	0.798
$^{57}\mathrm{Co}$	272	0.519
56 Co	77	0.108
^{54}Mn	312	0.154
^{46}Sc	84	0.027
59 Fe	44	0.047
^{48}V	16	0.039

L. Baudis, et al., Cosmogenic activation of xenon and copper, The European Physical Journal C 75 (10) (2015) 485. doi:10.1140/epjc/s10052-015-3711-3.

Steel vessel

-	Activity [mBq/kg]	
Isotope	Lot n.S536	Lot n.T915
1997.0	Thickness 3/8"	Thickness 1/4"
40 K	0.12	< 0.03
$^{238}\mathrm{U}$	3.7	0.49
$^{232}\mathrm{Th}$	< 0.41	0.082

E. Shields, SABRE: A search for dark matter and a test of the DAMA/LIBRA annual-modulation result using thallium-doped sodium-iodide scintillation detectors, Ph.D. Thesis Princeton University.

Veto PMTs Hamamatsu R5912

Isotope	Activity [mBq/PMT]
40 K	649
$^{238}\mathrm{U}$	883
232 Th	110
$^{235}\mathrm{U}$	41

P. Agnes, et al., The veto system of the DarkSide–50 experiment, JINST P03016. doi:https://doi.org/10. 1088/1748-0221/11/03/P03016

Liquid scintillator

Isotope	Activity [mBq/kg]
40 K	$3.5 \cdot 10^{-7}$
$^{238}\mathrm{U}$	$< 1.2 \cdot 10^{-6}$
232 Th	$< 1.2 \cdot 10^{-6}$
$^{210}\mathrm{Pb}$	$1.7 \cdot 10^{-6}$
²¹⁰ Bi	$1.7 \cdot 10^{-6}$
$^{7}\mathrm{Be}$	$< 1.2 \cdot 10^{-6}$
$^{14}\mathrm{C}$	$4.1 \cdot 10^{-1}$
$^{39}\mathrm{Ar}$	$3.5 \cdot 10^{-6}$
$^{85}\mathrm{Kr}$	$3.5 \cdot 10^{-7}$

G. Alimonti, et al., The liquid handling systems for the Borexino solar neutrino detector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 609 (1) (2009) 58 – 78. doi:http://dx.doi.org/ 10.1016/j.nima.2009.07.028.