

# The CUORE and CUPID Experience





L. Cardani 26/06/2018



### **Cryogenic Calorimeters**



- Convert **energy** in **temperature**:  $\Delta T \sim \Delta E/C$
- To obtain sizable  $\Delta T$  we need a small C
- Crystals cooled at 10 mK: C ~ T<sup>3</sup>
- $\Delta T$  converted into electrical signals





### CUORE

- O 988 TeO<sub>2</sub> crystals (~1 ton) + other 2 tons of copper at 10 mK
- O ~20 tons at different T stages



#### **Physics Motivation**

Main goal: search for **0vββ**: hypothesized, **never observed**, nuclear transition



- Forbidden by SM: it violates L (actually B-L) conservation
- O Can occur only if v is a Majorana particle
- O It creates matter (no anti-matter balancing)
- O Majorana phases: other sources of CPV?

#### **Physics Motivation**

Main goal: search for **0vββ**: hypothesized, **never observed**, nuclear transition



- Forbidden by SM: it violates L (actually B-L) conservation
- O Can occur only if v is a Majorana particle
- O It creates matter (no anti-matter balancing)
- Majorana phases: other sources of CPV?

But large mass, low threshold, low background and Quenching~1:

- Annual modulation of nuclear recoils induced by
   WIMPs (tens of keV for ~100 GeV WIMPs)
- O Solar axions by inverse Primakoff effect: M1 transition of <sup>57</sup>Fe, expected at 14.4 keV



### The Nightmare: Radio-Activity

- O In CUORE (but not only) the **external background** can be effectively **suppressed**
- O The detector itself becomes the main problem!
- O Challenge: such small contamination levels required, that **no screening techniques** available!

#### ACTIVE MATERIALS

Can often be used as detectors to assess their own contaminations

#### **PASSIVE MATERIALS**

Can be more problematic, especially when dealing with surface contaminations

#### Crystals

- Used by many experiments as calorimeters, scintillators...
- CUORE (TeO<sub>2</sub>), CUPID (ZnSe and LiMoO<sub>4</sub>), AMoRE (<sup>40</sup>Ca<sup>100</sup>MoO<sub>4</sub>), GERDA and Majorana (Ge)...
- CRESST (CaWO<sub>4</sub>), Edelweiss, CoGeNT (Ge)...
- Nal (DAMA, SABRE, ANAIS, DM-Ice..)
- ...and many others



### Crystals

- Used by many experiments as calorimeters, scintillators...
- CUORE (TeO<sub>2</sub>), CUPID (ZnSe and LiMoO<sub>4</sub>), AMoRE (<sup>40</sup>Ca<sup>100</sup>MoO<sub>4</sub>), GERDA and Majorana (Ge)...
- CRESST (CaWO<sub>4</sub>), Edelweiss, CoGeNT (Ge)...
- Nal (DAMA, SABRE, ANAIS, DM-Ice..)
- ...and many others

- Contaminations from <sup>40</sup>K, <sup>238</sup>U, <sup>232</sup>Th and daughters
- Cosmogenic activation of materials
- Selection and monitoring of all materials, tools and facilities for crystal growth
- Selection of equipment for chemical and mechanical processing, storage



#### An excellent result: TeO<sub>2</sub>



Fig. 2 Radio-purity certification protocol applied for TeO<sub>2</sub> crystals.

- Must be <3x10<sup>-13</sup> g/g in <sup>238</sup>U, <sup>232</sup>Th
- Contribution of I.Dafinei (INFN Roma)
- Strict protocol for each step of crystal production



- In clean room, etching and polishing
- Packaging and underground storage

doi:10.1016/j.jcrysgro.2010.06.034

### **Screening Technologies**

Each stage of production is monitored accurately:

- ICP-MS for contaminations in <sup>232</sup>Th and <sup>238</sup>U in Te, TeO<sub>2</sub> and consumables and in all other reagents. Sensitivity of 10<sup>-12</sup> g/g achievable.
- HPGe to be sensitive also to broken chains and <sup>40</sup>K. For our purposes, 10<sup>-10</sup> g/g on Th and U was enough, but 10<sup>-12</sup> g/g achievable (long run)
- SBD for surface contaminations of specific materials ad monitoring of selected components (in particular for lapping cloths, packaging...)





#### Cryogenic test

Bulk: <1.8x10<sup>-14</sup> g/g in <sup>238</sup>U and <5.5x10<sup>-14</sup> g/g in <sup>232</sup>Th

#### **Passive Materials: Copper**

Good mechanical/thermal properties, radio-pure —> structural parts of many detectors





#### 1<sup>st</sup> problem: how to make it more radio-pure

2<sup>nd</sup> problem: how to check the purity level

### **Electro-formed Copper**



- When electro-plating copper from a solution onto cathodes, most of the contaminants do not follow copper (different electrochemical value)
- Electrodeposition OFHC copper on stainless steel forms
- Everything done underground (reduce activation)
- Outstanding purity: 0.3 µBq/kg for <sup>232</sup>Th and <sup>238</sup>U

- Originally proposed at PNLL
- Now CES (Copper Electroforming Process) at CANFRANC
- Not (yet) able to clean surface of the materials but efficient for the purification in many materials



#### **3D-Printed Copper**



OFHC copper converted into powder and used via 3D-printers in controlled environment

Radio-purity measured at LNGS

Improvement of surface roughness at LNL

Characterization at low temperatures at Roma (N.Casali)



### Radio-Assay

Neutron Activation Analysis and HPGe spectroscopy showed no traces for contaminations

|                   | µBq/kg | g/g                    |
|-------------------|--------|------------------------|
| <sup>232</sup> Th | <2     | <0.5x10 <sup>-12</sup> |
| 238               | <70    | <6x10 <sup>-12</sup>   |

#### Study of surface contaminations is difficult

doi:10.1016/j.astropartphys.2013.02.005





T1 T2 T3 Large arrays provide sensitivities of tens of nBq/cm<sup>2</sup>

For next generation detectors, we must ensure an even better purity (~ a factor of 10)

This becomes a problem also for assay

# Improving Sensitivity: Bulk



- ICP-MS with pre-concentration of contaminants
- Current goal: automation and <sup>40</sup>K assay

| Material                                                   | Th, U Detection Limits |        |
|------------------------------------------------------------|------------------------|--------|
|                                                            | μ <b>Bq/kg</b>         | ppt    |
| Copper (Electroformed or commercial OFHC)                  | <0.1                   | <0.01  |
| Lead                                                       | <1                     | <0.1   |
| Titanium                                                   | <1                     | <0.1   |
| Stainless Steel                                            | <1                     | <0.1   |
| Polymers (PTFE, PVDF, Acrylic, Bioabsorbables, etc.)       | <1                     | <0.1   |
| Linear Alkyl Benzene (LAB)                                 | <0.1                   | <0.01  |
| Quartz, Fused Silica                                       | <1                     | <0.1   |
| Electronic Components: FETs, resistors, thermocouples, etc | <0.1 pg/component      |        |
| Solutions                                                  | <0.01                  | <0.001 |

# Improving Sensitivity: Surface

Scintillating bolometers allow to achieve an extremely high sensitivity on surface contaminations in a few weeks of measurements.

#### L.Cardani

Advantages:

- · Simultaneously  $\alpha$  and  $\gamma$  spectroscopy
- Wide active surface (hundreds of cm<sup>2</sup>)
- No dead layers
- Excellent energy resolution (< %)</li>
- Low intrinsic background

with these features, we can achieve a ~tens of nBq/ cm<sup>2</sup> in a few weeks

http://stacks.iop.org/1748-0221/7/i=10/a=P10022



### Conclusions

- A long R&D on materials allowed to reach a very low background with CUORE
- The development of pure material is crucial for many experiments in different fields
- Most of the purity levels are extremely difficult to assess with conventional techniques
  - New, versatile technologies have been proposed

M2 spectra (X-rays)

#### Efficiency - corrected energy spectrum



| Recoiling Nuclei  | Eexpected | Emeasured        | QF                        |
|-------------------|-----------|------------------|---------------------------|
| <sup>206</sup> Pb | 103.12    | $95.62 \pm 0.24$ | $0.927 \pm 0.002$ (stat.) |
| <sup>218</sup> Po | 100.8     | $100.0\pm0.9$    | $0.992 \pm 0.009$ (stat.) |
| <sup>220</sup> Rn | 103.50    | $100.45\pm1.21$  | $0.971 \pm 0.012$ (stat.) |
| <sup>214</sup> Pb | 112.13    | $110.92\pm0.96$  | $0.989 \pm 0.009$ (stat.) |

Table 3 Expected energy, measured energy obtained from fits, and resulting quenching factors (QFs) for the selected recoiling nuclei. Only statistical uncertainties are shown in the QFs.

- Assuming coherent scattering (A<sup>2</sup>) TeO2 is interesting both for high and low masses
- Only spin-independent
- Coherent isospin-invariant coupling and the Helm model for nuclear form factors
- For WIMP velocity, standard halo model (SHM)
- WIMP local density 0.3 GeV/c<sup>2</sup>, local circular velocity 220 km/s, galactic escape velocity 650 km/h, orbital
  velocity of Earth around the Sun 29.8 km/s,
- For each (mW,  $\sigma$ SI) we generate 100 toy MC simulations
- For each MC spectrum, maximum likelihood analysis for annual modulation and no modulation hypothesis
- Significance of modulation quoted as log-likelihood ratio of the best fits
- The likelihood is calculated using a PDF containing the target mass, the detection efficiency (BoD) and the background pdf (no temporal dependency)
- ROI: 10-28 keV to exclude peaking background (most of the signal expected at low energy)
- Uncertainty on energy scale dominated by QF (consevatively 7%)
- Sensitivity computed requiring a 90% CL in 90% of the toy experiments