Characterizing Cosmological Fields with Blazar Observations: the EBL and IGMF

Elisa Pueschel eXtreme19 2019.01.24

HELMHOLTZ Young Investigators

The Big Picture: Cosmology

Many observables that reflect the universe's evolution Including diffuse light and magnetic fields

Extragalactic Background Light

Imprint from reionization, star formation, galaxy evolution, emission by active galactic nuclei Unresolved sources? Dark matter decay? Exotic physics?

Extragalactic Background Light

EBL density evolves with time/redshift

Modeling the Extragalactic Background Light

Multiple approaches to predict the EBL intensity & spectrum

- Backward evolution models
 - Start with local luminosity density + galaxy number counts
- Forward evolution models
 - Start with cosmic star formation rate, radiative transfer + population synthesis models
- Semi-analytical models
 - Start with ACDM universe
 - Account for dark matter, baryonic physics, feedback in galaxy evolution

Measuring the Extragalactic Background Light

- Direct measurements of night sky background
 - Sensitive to foreground contamination
 - Treat as upper limits

- Galaxy counts in magnitude bands
- Stacking analysis
 - Not sensitive to diffuse/ unknown components
 - Treat as lower limits

Indirect Measurements of EBL with Gamma-ray Emitters

Photons from distant gamma-ray sources interact with EBL photons via pair production, VHE γ-ray flux attenuated

TeV Transparency

- Optical depth T increases with energy and redshift
 - Depends on γγ interaction cross-section and number density of EBL photons (product integrated over distance, energy and angle)

To probe full EBL spectrum, need gamma-ray sources emitting to high energies, located out to large distances

Probing the EBL Spectrum

$$\lambda_{\rm EBL} \simeq 0.5 - 5\,\mu{\rm m} \times \left(\frac{E_{\gamma}}{1\,{\rm TeV}}\right) \times (1+z)^2$$

Probing the EBL Spectrum

Blazars: A Convenient Probe

3C 273 as seen in X-ray

- Blazars detected to cosmological distances
 - z=3 at HE (<100 GeV)
 - z~1 at VHE (>100 GeV)

EBL Imprint on Blazar Spectra

Use blazar observations to learn about EBL Need to understand EBL to understand blazar spectral properties!

Joint fit of EBL parameters & spectral properties or Minimal assumptions on intrinsic spectral properties + multiple sources 1. No convex spectral shapes 2. Extrapolate lower energy spectral measurements

EBL Measurement from Archival Spectra

- Archival dataset of 30 blazars, 86 spectra
- Independent of EBL shape assumption
- Use Fermi-LAT spectra
- 11σ EBL detection
 - Good agreement with 3 theoretical models

EBL Measurement with H.E.S.S.

- 9 blazars, 21 spectra
- z = 0.031-0.287

H.E.S.S. collaboration 2017

Data set	Live time	σ	z	$E_{\min} - E_{\max}$
	(hours)			$({\rm TeV})$
Mrk $421 (1)$	4.9	89.6	0.031	1.41 - 14.9
$Mrk \ 421 \ (2)$	3.8	122	0.031	1.22 - 15.9
Mrk 421 (3)	2.9	123	0.031	1.19 - 19.5
$Mrk \ 421 \ (4)$	3.3	96.2	0.031	1.6 - 16.5
$Mrk \ 421 \ (5)$	1.6	46.0	0.031	1.5 - 15.2
Mrk 501	1.8	66.7	0.034	1.9 - 19.5
PKS $2005 - 489(1)$	71.2	28.8	0.071	0.29 - 1.6
PKS 2005-489 (2)	18.7	29.2	0.071	0.29 - 3.0
PKS 2155-304 (1)	7.4	94.8	0.116	0.24 - 4.6
PKS 2155-304 (2)	6.1	119	0.116	0.24 - 1.98
PKS 2155-304 (3)	5.5	187	0.116	0.24 - 3.7
PKS 2155-304 (4)	2.6	135	0.116	0.24 - 2.44
PKS 2155-304 (5)	3.5	227	0.116	0.24 - 4.6
PKS 2155-304 (6)	1.3	172	0.116	0.29 - 4.6
PKS 2155-304 (7)	1.3	200	0.116	0.29 - 3.6
PKS 2155-304 (8)	25.4	111	0.116	0.19 - 3.7
1ES 0229+200	57.7	11.6	0.14	0.4 - 2.8
H 2356-309	92.6	19.6	0.165	0.19 - 1.98
$1 \text{ES} \ 1101 - 232$	58.2	16.8	0.186	0.19 - 1.98
$1 \text{ES} \ 0347 - 121$	33.9	14.1	0.188	0.19 - 6.9
$1 \text{ES} \ 0414 + 009$	73.7	9.6	0.287	0.19 - 0.69

EBL Measurement with H.E.S.S.

- Wavelength-resolved analysis
 - Joint fit to EBL intensity & spectral parameters
- 9.5σ EBL detection

EBL Measurement with MAGIC

- 12 blazars, 32 spectra
- z = 0.03-0.944
- Use contemporaneous Fermi-LAT spectra

EBL Measurement with MAGIC

- Wavelength-resolved analysis
 - EBL reference model Dominguez 2011

$$\left(\frac{dN}{dE}\right)_{obs} = \left(\frac{dN}{dE}\right)_{int} \exp(-\alpha_1 \tau_1) \dots \exp(-\alpha_n \tau_n)$$

Summary: Extragalactic Background Light

- Gamma-ray measurements show good consistency with lower limits on EBL intensity from galaxy counts
 - No hint of diffuse component (but uncertainties large)
- Good consistency with several theoretical models
- Full treatment of systematic uncertainties \rightarrow more robust results
 - Ignorance of intrinsic spectral shape major confounding factor
 - EBL evolution with redshift still guided by theoretical models for "modelindependent" measurements
- COB well-resolved, CIB only partially resolved
 - Interesting region for testing models
 - Statistics limited & at edge of current IACT energy ranges

Magnetic fields in the universe

Important component in the universe's energy and evolution How to produce strong B fields in galaxies/galaxy clusters? \rightarrow Intergalactic magnetic field (IGMF) as seed field

Millennium simulation project

Primordial Generation/Astrophysical Generation

Regardless of origin, insight from measuring field in voids

Existing Constraints on IGMF

- NB: Ignoring constraints from gamma-rays
- Large allowed phase space
 - Measure strength & correlation length to decipher generation scenario
 - Degeneracies

DESY.

Photons from distant gamma-ray sources interact with **EBL photons** via **pair production**, e+e- pairs interact with **CMB photons** via **inverse-Compton scattering**

Energy loss of e+e- pairs due to plasma instabilities? Relative cooling timescales determine cascade development

Following results assume inverse-Compton cooling to be dominant effect

Electromagnetic Cascades & IGMF

Magnetic field **deflects** e+e- pairs Path length to observer **increases**

IGMF Strength Regimes

10⁻¹² G < B < 10⁻⁷ G "Pair halo"

e+e- pairs isotropize around source Angular extension t_{cascade} >>> t_{primary} 10⁻¹⁶ G < B < 10⁻¹² G "Magnetically broadened cascade" Angular extension

tcascade >> tprimary

 $B < 10^{-16} G$ No angular extension Spectral or timing measurements $t_{cascade} > t_{primary}$ NB: Indicative values for VHE regime

Predicted Energy/Angular Profiles

Cascade behavior predicted analytically or by simulations

Simulations by T. Weisgarber

- Greatest cascade emission fraction \rightarrow best chance of detection
 - Dependent on redshift (& energy)
 - Require emission to high energies

(Extreme) Blazars

Predicted Energy/Angular Profiles

Cascade behavior predicted analytically or by simulations

- Greatest cascade emission fraction \rightarrow best chance of detection

(Extreme) Blazars

- Dependent on redshift (& energy)
- Require emission to high energies

IGMF Constraints from y-ray SEDs

- Set IGMF constraints from GeV-TeV spectra
- Cascade component predicted (analytically) from VHE spectrum
 - Set lower limits on IGMF strength
 - Smaller IGMF \rightarrow larger observed cascade flux

IGMF Constraints from y-ray SEDs

Exclude B < 10-19 **G** (λ_B=1 Mpc) @ 5σ

IGMF Constraints from Angular Extension

H.E.S.S. collaboration 2014 VERITAS collaboration 2017 Cascade fraction depends on: EBL model Intrinsic source spectrum (spectral index & cutoff)

H.E.S.S. best source: PKS 2155-304 VERITAS best source: 1ES 1218+304

IGMF Constraints from Angular Extension

Compare predicted cascade fraction with observed upper limits

- Limits depend strongly on intrinsic spectrum assumption (weakly on EBL model)
- VERITAS, nominal assumptions: exclude B ~ 10⁻¹⁴ G at 95% C.L. (λ_B =1 Mpc)
- H.E.S.S., nominal assumptions: exclude B = $(0.3-3)\times10^{-15}$ G at 99% C.L. (λ_B =1 Mpc)

IGMF Constraints from Spectral/Angular Analysis

- Pass 8 LAT analysis with improved PSF
- Joint spectral & angular fit
 - Spectral information dominates sensitivity
- 9 HBLs included in analysis
 - Low variability, well-measured redshift, spectral points to T>2

Fermi-LAT collaboration & J. Biteau 2018

IGMF Constraints from Spectral/Angular Analysis

DESY.

IGMF Summary

- Recent studies disfavor zero/low IGMF strength
- Several factors strongly affect limits
 - Timescale of emission at current flux level
 - Assumed intrinsic spectrum
 - Cascade modeling
- Broderick 2018 (not covered) quote B<10⁻¹⁵ G ($\lambda_B \ge 1$ Mpc)
 - Conflict with Fermi-LAT limits?
- Relative timescale of inverse Compton cooling versus cooling via plasma
 instabilities critical to interpretation of observations

Conclusions

- Gamma-ray astronomy has something to say about cosmology
- Access two important observables
 - EBL imprint of stellar and galactic activity, energy transfer since the dark ages
 - IGMF measuring fields in voids to understand evolution of magnetic fields in matter-dense regions
- Understanding blazar properties will feed into better cosmological understanding

Thank you!