An Introduction to...

Luigi Costamante, ASI - Italian Space Agency

What are they ? Who are they ? How many are they? Which behaviour ? Why are they important? Where to find them ?

Blazars' SED Sequence

Giommi & Padovani 1994,1995

What are they: Definitions

Extreme BL Lacs are the highest-peak version of HBL They come in TWO TYPES:

1) Extreme Synchrotron: $\nu_{\text{peak}} > 1 \text{ keV}$ $\Gamma_{\text{X}} < 2$

2) Extreme Compton: $\nu_{\text{peak}} > 1 \text{ TeV}$ $\Gamma_{\text{VHE}} < 2$

keV-peaked BLLac (KBL) & TeV-peaked BL Lac (TBL) ?

It all started in ~1997... with BeppoSAX

Giommi et al. 2000 Ghisellini et al. 2000

Ghisellini hunting: $\alpha_{RX} < 0.6$ & $F_X > 1E-11$

Extreme Compton BL Lacs

Intrinsic $\Gamma_{VHE} < 2$ (typically 1.5-1.7), with any EBL intensity (even lowest one).

 \Rightarrow Compton peak \geq 3-10 TeV

Who are they ?

So far:

Name	Z.	$\Gamma_{intr.}$	Energy TeV				
1ES 0229+200 1ES 0347-121 1ES 0414+009 PKS 0548-322 RGB J0710+591 1ES 1101-232	0.140 0.188 0.287 0.069 0.125 0.186	$1.5 \pm 0.2 \\ 1.8 \pm 0.2 \\ 1.9 \pm 0.3 \\ 2.0 \pm 0.3 \\ 1.8 \pm 0.2 \\ 1.7 \pm 0.2$	$\begin{array}{r} 10.7 \\ \hline 0.6-12 \\ 0.25-3 \\ 0.15-2 \\ 0.3-4 \\ 0.3-4 \\ 0.2-4 \end{array}$	EBL-deabsorption with: Franceschini et al. 2008 Dominguez et al. 2011			
1ES 1218+304 H 2356-309	0.182 0.165	1.9 ± 0.1 1.95 ± 0.2	0.2–4 0.2–2				
1 ES 1741 + 196	0.084	1.9 ± 0.3 2.4 ± 0.7	Magic Veritas				
1 ES 1727 + 502	0.0554	$\begin{array}{c} 1.8\pm0.3\\ 2.3\pm0.5\end{array}$	Veritas m Magic	noonlight			

Mkn 501 nearly: a case by itself... (see later)

How many are they ?

TeVCAT (December 2018): 49 HBL -12 no or uncertain z - 4 no data

VHE spectral sample: 33 HBL Hard-TeV spectra: 8 (+2) Soft-TeV spectra: 22

Extreme-C are (8/33) ~ 1/4 of all HBL

Extreme-S are > 15 ~ to be completed (Swift) (12/44) ~ 1/4 of SAX HBL

Relation between the two types ? UNCLEAR (all combinations)

Costamante 2013

Extreme C, not S

Relation between the two types ? UNCLEAR

(all combinations)

Extreme S, not C

Variability ?

Extreme-S synchrotron peak

LC et al. 2002

When flaring, extreme-S remain Soft-TeV

e.g. Veritas Coll. 2013

Mkn 501: 1997 = 2012

HEGRA Coll. 1999

Ahnen et al. 2018 Magic data

Extreme-S for long time (1426-like)

1ES 0229+200 Lightcurve

Cologna et al. 2015, ICRC

1ES 0229+200 Fermi-LAT detection only after 2011

LC, Boheme Meeting 2014

1ES 1218+304: Fast Day-timescale variability at VHE

Why they are important:

1) TeV beamers: cosmological probes for EBL and IGMF

2) Neutrino / UHECR sources ?

3) New physics probes ?

4) Challenge for Blazars emission models: what origin for the observed gamma-rays ?

Cosmological probes

Vovk et al. 2012

SED of Extragalactic Background Light

see e.g Costamante 2013

Breakthrough in 2006

Strong limits Fermi-LAT + VHE

Extreme-C probe CIRB above 10 μ m

Spectra > 10 TeV, possible problems ?

e.g. Costamante 2013

IGMF lower limits B> $10^{-16} - 10^{-17}$ G

Neronov & Vovk 2010 Tavecchio et al 2010 Taylor et al. 2011 Vovk et al. 2012 etc

Emission mechanism: problems for one-zone SSC

Efficient Cooling + KN effects tend to steepen spectrum at VHE-TeV

Hard distributions and SSC ?

comprehensive discussion in Lefa et al 2011

Where is synchrotron emission of these TeV electrons ?

NuSTAR-Swift observations

2013-2016 observations,

Fermi-LAT data 4Y: 2013-2017 Pass8

Costamante et al. 2018

NuSTAR-Swift observations

Costamante et al. 2018

NuSTAR-Swift observations

Costamante et al. 2018

Source	γ_0	n_0	γ_1	$\gamma_{ m b}$	γ_2	n_1	n_2	В	K	R	δ	$U_{\rm e}/U_{\rm B}$
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
1ES 0229+200 a	_	-	100	1.1×10^6	2×10^7	1.4	3.35	0.002	6	0.8	50	1.7×10^5
1ES 0229+200 b	-	-	2×10^4	1.5×10^6	2×10^7	2.0	3.4	0.002	10^{3}	2.1	50	2.0×10^4
1ES 0347-121 a	-	-	100	7.5×10^5	1.8×10^7	1.7	3.8	0.0015	1.2×10^2	1.2	60	$1.5 imes 10^5$
1ES 0347-121 b	-	-	3×10^3	7.5×10^5	1.8×10^7	2.0	3.8	0.0015	8×10^2	2.5	60	3.4×10^4
1ES 0414+009 a	10	1.7	1×10^4	10^{5}	10^{6}	3.0	4.6	0.3	8×10^6	2.1	20	0.5
1ES 0414+009 b	-	-	3×10^4	5×10^5	3×10^6	2.0	4.3	0.0025	1.6×10^2	6.5	60	9.3×10^2
RGB J0710+591	-	-	100	6×10^5	10^{7}	1.7	3.8	0.011	1.2×10^2	0.92	30	2.7×10^3
1ES 1101-232 a	-	-	3.5×10^4	1.1×10^6	6×10^6	2.2	4.75	0.0035	$7.0 imes 10^3$	2.5	60	2.4×10^3
1ES 1101-232 b	-	-	1.5×10^4	9.5×10^5	4×10^6	2.2	4.75	0.005	2.4×10^3	3.8	50	$6.0 imes 10^2$
1ES 1218+304	100	1.3	3×10^4	10^{6}	4×10^6	2.85	4.2	0.0035	1.2×10^7	3.5	50	4.5×10^3

Costamante et al. 2018, models by Tavecchio

SSC can work but: 1) dropping one zone (no fit below UV)
2) strongly out of equipartition (E-3 to E-6)
3) extremely low radiative efficiency

SEDs of the last two:

Alternatives ? proton-synchrotron scenarios

Photo-pion problem: for broad-band spectra, high Urad absorbs VHE gammas...

But see Petropoulou et al. 2016

...but HBL give most of the signal for UHECR - blazar correlation in Icecube Neutrinos Fields

Secondary emission ? e.g. from UHE-protons $p + \gamma_{\text{CMB}} \rightarrow p + e^+ + e^- \longrightarrow \text{cascade}$ \longrightarrow deposition of gamma-rays closer to us

Prosekin et al, Kusenko et al., Murase et al., Aharonian et al,

Prosekin et al. 2012

But: No strict X-TeV correlation No fast variations (washed out)

Main problem: Large Scale Structure IGMF

Where to find them

Warning:

Extremeness is established ONLY through direct measure of X-ray and VHE spectra !

$$\Gamma_{\rm X} \le 2$$

 $\Gamma_{\rm TeV} \le 2$

Where to find them

Sedentary Survey sample (Giommi et al. 1999-2005)

150 BL Lacs, candidate Extreme-S

Where to find them

Not simply TeV BL Lacs, but *TeV-peaked* BL Lacs !

Bonnoli et al. 2015:

- $F_X/F_R > 10^4$
- Host galaxy dominance
- z < 0.4
- Plotkin sample

Better look at *Fermi-weak objects* ! not Fermi-bright HBL !

Quadratisch. Praktisch. Gut !

Some Conclusions

- Extreme BL Lacs are the most challenging and rewarding Blazars so far, at the crossroads of many different research fields.
- We do not know yet for sure the origin of their gamma-rays
- Need of unbiased sky surveys in TeV
- Answers with eRosita and CTA surveys (for the two types)
- But in the meantime: to Cherenkov Collaborations, please do dedicated observing programs and publish them !
- To all of us: lots of possible treasures in Swift database

Back-up slides

Tavecchio et al 2009