Particle acceleration in relativistic outflows

Martin Lemoine Institut d'Astrophysique de Paris CNRS – Sorbonne Université

eXtreme 19 Conference – Padova, Jan.22-25 2019

Acceleration in radio-galaxies, blazars...

Rieger+Levinson 18

+ acceleration in the large-scale jet (shock, turbulence, shear...)

The relativistic Hillas bound

A generic case: acceleration in an outflow

(e.g. Lovelace 76, Norman+ 95, Blandford 00, Waxmar 05, Aharonian+ 02, Lyutikov & Ouyed 05, Farrar & Gruzinov 09, M.L. & Waxman 09)

wind

- ightarrow acceleration timescale (comoving frame): $t_{
 m acc}$ = ${\cal A}$ $t_{
 m g}$
- \rightarrow time available for acceleration (comoving frame): $t_{\rm dyn} \approx \frac{R}{\beta \Gamma c}$
- \rightarrow maximal energy: $t_{\rm acc} \leq t_{\rm dyn} \Rightarrow E_{\rm obs} \leq \mathcal{A}^{-1} ZeBR/\beta$
- → 'magnetic luminosity' of the source: $L_B = 2\pi R^2 \Theta^2 \frac{B^2}{8\pi} \Gamma^2 \beta c$
- → maximal energy:

$$E \lesssim 10^{20} \,\mathrm{eV} \; Z \; \mathcal{A}^{-1} \; \left(\frac{L}{10^{45} \,\mathrm{erg/s}}\right)^{1/2}$$

the bound 10⁴⁵ ergs/s is robust: holds in the sub-relativistic limit, or as $\theta \rightarrow 0...$... however, the bound applies to stationary flows only...

For reference:

low luminosity AGN: $L_{bol} < 10^{45}$ erg/s Seyfert galaxies: $L_{bol} \sim 10^{43}$ - 10^{45} erg/s high luminosity AGN: $L_{bol} \sim 10^{46}$ - 10^{48} erg/s

Standard lore:

$$\rightarrow$$
 Lorentz force: $\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} = q\left(\boldsymbol{E} + \frac{\boldsymbol{v}}{c} \times \boldsymbol{B}\right)$

ightarrow recall: $oldsymbol{E} \cdot oldsymbol{B}$ and $oldsymbol{E}^2 - oldsymbol{B}^2$ Lorentz scalars

Case 1:
$$\boldsymbol{E} \cdot \boldsymbol{B} = 0$$
 and $\boldsymbol{E}^2 - \boldsymbol{B}^2 < 0$

 \rightarrow generic because it corresponds to ideal MHD assumptions...

 \rightarrow \exists a frame in which **E**_{1p} vanishes: the plasma rest frame for ideal MHD

→ examples: Fermi-type scenarios (turbulence, shear, shocks)

Case 2:
$$E \cdot B \neq 0 \text{ or } E^2 - B^2 > 0$$

 \rightarrow acceleration can proceed unbounded along **E** (or at least **E**_I)...

\rightarrow examples: reconnection, gaps

Linear acceleration in magnetospheric gaps

e.g. Rieger & Levinson 18 +refs

<u>Electric gap:</u> $\mathbf{E}.\mathbf{B} \neq \mathbf{0}$

→ gap exists as long as parallel E_{\parallel} is not screened by moving charges... provides voltage:

$$\Phi_E \sim -h_{\rm gap}^2 4\pi \left(\rho_e - \rho_{\rm G-J}\right)$$

$$f$$
screening
Goldreich-Julian
charge density

 \rightarrow fast acceleration with variability time scale \precsim r_{grav} /c ...

Current questions:

\rightarrow is the gap steady or transient?

... depends notably on accretion rate, feedback of pairs etc...

→ height h_{gap}?
... controls luminosity and max energy...

Acceleration in reconnection flows

\rightarrow simulations:

(Zenitani+Hoshino 01,Uzdensky+11,Cerutti+12, Hoshino12,Melzani+13,Sironi+Spitkovsky14,Guo+14,Kagan+15...):

... $\beta_{in} \sim 0.1$ at most in 2D reconnection

... spectral index $s \sim 1 \dots 3+$ for high...low $\sigma = B^2/(4\pi n m c^2)$ (magnetization)

... acceleration process: at X-point and elsewhere in plasmoid regime

⇒ reconnection *appears as a fast acceleration* process, *ideal for short-scale variable phenomena* (blazar flares, Crab flares, GRB prompt flares?)

Reconnection in high-energy astrophysical sources

\rightarrow what happens at large scales, if gyroradius $~r_g \gg L_{\rm reconnection}~$...? scattering in turbulence ?

... e.g. Drake+ 06, Guo+17: most of energy gained through Fermi-type processes in reconnection outflows and reconnection seeded turbulence..

Fermi scenarios

Ideal MHD: (Fermi 49)

ightarrow Ohm's law in plasma rest frame $_{|p}$: ${f E}_{|p} = {f j}/\sigma \, \mathop{\sim}\limits_{\sigma
ightarrow\infty} \, 0$

... very large conductivity σ screens E_{1p} : no acceleration in a plasma at rest....

ightarrow for a plasma in motion at $oldsymbol{eta}_{\mathsf{p}}$: $E = -eta_{\mathsf{p}} imes B$

... E is motional, acceleration related to the velocity flow

 \rightarrow however, if **E** and **B** uniform, one can always boost to the plasma rest frame, in which acceleration does not take place: no long-term acceleration...

... acceleration requires a changing (in time or space) electromagnetic configuration... a non-uniform/non-constant stirring motion of the plasma...

→ **E.B** = 0...

... acceleration requires some transport across B-lines ...

Ideal MHD:

ightarrow **E** field is 'motional', i.e. if plasma moves at velocity $m{eta}_{
m p}$: ${f E} = -m{eta}_{
m p} imes {f B}$

 \rightarrow need scattering to push particles across *B*

 \Rightarrow t_{acc} scales with the scattering time (time needed to enter random walk)

- \rightarrow examples: turbulent Fermi acceleration
 - Fermi acceleration at shock waves

- magnetized rotators

Fermi scenarios: the issue of scattering

Scattering timescale vs gyrotimescale:

→ <u>scattering timescale</u>: time t_{scatt} it takes to deflect the particle by an angle of the order of unity,

$$t_{\rm scatt} \sim t_{\rm g}^{\alpha} \, (L/c)^{1-\alpha}$$

with L typical scale of turbulence

 \rightarrow microscopic turbulence:

 $t_{\rm scatt} \approx \frac{t_{\rm g}}{\lambda_{\rm turb}/c} t_{\rm g} \propto p^2$

slow at higher energies...

... Bohm-like at min scale $ct_1 \sim \lambda_{turb}$,

... in absence of specific information, assume (too often!): α ~ 1 Bohm regime ... however:

 \rightarrow macroscopic turbulence:

 $t_{
m scatt} \approx t_{
m g}^{2-q} (\lambda_{
m turb.}/c)^{q-1}$ with $|q-2| \ll 1$... slow at low energies, Bohm-like at max scale $ct_{
m L} \sim \lambda_{
m turb}$

Turbulent acceleration

Original Fermi model for acceleration:

... particle interaction with random moving scattering centers... ... acceleration becomes stochastic with diffusion coefficient:

$$\left\langle \frac{\Delta p^t \Delta p^t}{\Delta t} \right\rangle \sim \beta_u^2 \frac{p^2}{t_{\rm int}}$$

Modern view, turbulent acceleration:

... particle interaction with turbulence...

... in *wave turbulence*, resonant particle-wave interactions can reduce significantly $t_{int} \approx t_{scatt} \dots$... but resonances seem absent in modern turbulence theories (Chandran 00) ...

... do waves provide a faithful representation of turbulence?

 B_x in relativistic MHD turbulence (256³) © C. Demidem

Stochastic acceleration in relativistic wave turbulence

Non-resonant acceleration in relativistic turbulence

Beyond quasi-linear theory: follow transport of particle in momentum space in a continuous sequence of (non-inertial) local plasma rest frames, where the electric field vanishes at each point... (M.L. 19)

... evolution of energy in local plasma rest frame

$$\frac{\mathrm{d}\hat{p}^{\hat{t}}}{\mathrm{d}\tau} = e^{\beta}{}_{\hat{b}} e^{\gamma}{}_{\hat{c}} \frac{\partial}{\partial x^{\gamma}} e^{\hat{t}}{}_{\beta} \frac{\hat{p}^{\hat{b}}\hat{p}^{\hat{c}}}{m}$$

with $e^{\beta}_{\hat{b}}$ vierbein [~ local Lorentz transform] to comoving plasma frame

... then, to lowest order in \mathbf{u}^2 (sub-relativistic flow):

$$\begin{cases} \left\langle \frac{\Delta p^t \Delta p^t}{\Delta t} \right\rangle = \frac{\sqrt{2}}{3} p^2 t_{\text{scatt}} \left[\langle \theta^2 \rangle + \frac{3}{5} \langle \sigma^2 \rangle + \frac{3}{\sqrt{2}} \langle a^2 \rangle \right] & \left(t_{\text{scatt}} \lesssim k_{\min}^{-1} c^{-1} \right) \\ \left\langle \frac{\Delta p^t \Delta p^t}{\Delta t} \right\rangle = \frac{4}{\pi} \frac{p^2}{k_{\min}^2 t_{\text{scatt}}} \left[\langle \theta^2 \rangle + \frac{3}{5} \langle \sigma^2 \rangle + \frac{3}{2} \langle a^2 \rangle \right] & \left(t_{\text{scatt}} \gtrsim k_{\min}^{-1} c^{-1} \right) \end{cases}$$

with: $\left< \theta^2 \right> \equiv \left< {f \nabla} \cdot {f u}^2 \right>$

$$\left\langle \sigma^{2} \right\rangle \equiv \left\langle u_{(i,j)} \, u^{(i,j)} \right\rangle - \frac{1}{3} \left\langle \theta^{2} \right\rangle$$

 $\left\langle a^2 \right\rangle \equiv \left\langle u_{i,0} \, u^i_{,0} \right\rangle$

stochastic compression/dilatation

turbulent shear acceleration

stochastic time shear/acceleration

A modern view on turbulent acceleration

Diffusion coefficient:

... define:

 $\eta = rac{\left< \delta B^2 \right>}{B^2 + \left< \delta B^2 \right>}$ fraction of turbulent energy density

... define: q index of turbulent power spectrum between k_{min} and k_{max}

wave turbulence:

... for fast magnetosonic modes:
$$D_{pp} \sim \kappa_{\rm F} \eta_{\rm F} \beta_{\rm F}^2 \frac{p^2}{k_{\rm min}c} (r_{\rm g} k_{\rm min})^{q_{\rm F}-2}, \quad \kappa_{\rm F} \sim 0.1$$

... for Alfvén modes: $D_{pp} \sim \kappa_{\rm A} \eta_{\rm A} \beta_{\rm A}^2 \left| \frac{\Im \omega}{\Re \omega} \right| \frac{p^2}{k_{\rm min}c}, \quad \kappa_{\rm A} \sim 0.1$
 $[t_{\rm scatt} \lesssim (k_{\rm min}c)^{-1}]$

generic turbulence, non-resonant acceleration:

... assuming
$$t_{\rm s} \sim \left(k_{\rm min}c\right)^{-1}$$
: $D_{pp} \sim \kappa_{\rm NR} \left<\beta^2\right> \frac{p^2}{k_{\rm min}c}, \quad \kappa_{\rm NR} \sim 0.1$

$$\begin{array}{ll} \underline{\mbox{Acceleration timescale:}} & t_{\rm acc} \equiv \frac{p^2}{D_{pp}} \sim p^{\epsilon} \langle \beta^2 \rangle^{-1} \eta^{-1} \left(k_{\min} c \right)^{-1} \\ & \mbox{with } \epsilon \ll 1 \mbox{, 'hard sphere' model...} \end{array}$$

Relativistic shock physics

Relativistic shocks: superluminality is generic

\Rightarrow ultra-relativistic shock waves are mostly perpendicular (superluminal)

superluminal shock: point of contact between magnetic field line and shock surface moves along shock surface at velocity > c...

... meaning that if particles are tied to field lines, they cannot undergo Fermi cycles!

... hence no acceleration at relativistic shocks, unless particles are unlocked off field lines through **scattering in small scale turbulence...** (ML, Pelletier, Revenu 06)

Particle acceleration at relativistic shocks

 $\rightarrow magnetization hampers acceleration at u_{sh} = \beta_{sh} \gamma_{sh} \gg 1, ...$... the shock is superluminal: particles are advected on faster than they can scatter ...

→ *if scattering is effective*, relativistic shocks provide very fast acceleration with $t_{acc} \sim t_{scatt}$ in shock rest frame, spectral index ~2.2

... at small background magnetization, accelerated particles self-generate a turbulence of large amplitude...

... but *short precursor scale* \Rightarrow microinstabilities on tiny length scales... *no Bohm...*

... hence slow acceleration: $t_{acc} \propto p^2$...

Gamma-ray burst afterglows

20

5

Phase diagram for relativistic shock acceleration

Particle acceleration in relativistic shocks

Main progress in recent years/decades:

→ beyond naive test-particle acceleration in idealized flow configuration, i.e. include back reaction of acceleration / non-trivial flow configurations using high performance numerical simulation (MHD, PIC, PIC/MHD...) + theory

 \rightarrow current direction: increase time and length-scale of simulations...

Some results and some questions:

\rightarrow linear acceleration:

- ... how do magnetospheric gaps behave: transient / steady? duty cycle, max energy?
- ... how does reconnection extend on large time / space / dimensionality ?

→ turbulent acceleration:

... acceleration timescale $t_{\rm acc} \sim \eta^{-1} \langle \beta^2 \rangle^{-1} (k_{\rm min} c)^{-1} \dots$

due to the combination of (broadened) resonant and non-resonant effects...? many ongoing simulations, more to be learned...

\rightarrow shock acceleration:

... in highly relativistic regime (u>1): acceleration limited to weakly magnetized regime, scattering in small-scale turbulence implies $t_{\rm acc} \sim (k_{\rm min}c) t_{\rm g}^2$... but, in mildly relativistic regime: possibility of Bohm acceleration at magnetized shock waves ??

