Radiative Signatures of Relativistic Reconnection in Blazar Jets

lan Christie

In Collaboration with: Maria Petropoulou (Princeton) Lorenzo Sironi (Columbia) Dimitrios Giannios (Purdue)

Blazar Variability

Multi-wavelength variability lasting from minutes to weeks!

Α

Other Characteristics

Jorstad & Marscher 2016

Blazar SED: FSRQ

С

Α

eXtreme19- Radiative Signature of Reconnection - I. Christie

Blazar SED: BL Lac

С

Α

eXtreme19- Radiative Signature of Reconnection - I. Christie

Can we model blazar emission?

Magnetic Reconnection & PIC

Reconnection can:

- i. accelerate particles to relativistic energy
- ii. produce relativistically moving *plasmoids*
- Is simulated through *first-principles* particle-in-cell (PIC) simulations

(Guo et al. 2014, Sironi et al. 2015 & 2016, Werner et al. 2016, Sironi & Spitkovsky 2014)

PIC Simulation of Relativistic Reconnection: density, kinetic energy, magnetic energy

Sironi et al. 2016

Magnetic Reconnection: Particle Acceleration

Particles are accelerated at:

- i. X-points
- *ii. during mergers of plasmoids (i.e. secondary reconnection)*
- iii. plasmoid compression

(Guo et al. 2014, Sironi et al. 2015 & 2016, Werner et al. 2016, Sironi & Spitkovsky 2014, Petropoulou & Sironi 2018)

Particle Evolution with Reconnection Layer

Petropoulou & Sironi 2018

Magnetic Reconnection: Particle Acceleration

- Particles are accelerated at:
 - i. X-points
 - *ii. during mergers of plasmoids (i.e. secondary reconnection)*
 - iii. plasmoid compression

(Guo et al. 2014, Sironi et al. 2015 & 2016, Werner et al. 2016, Sironi & Spitkovsky 2014, Petropoulou & Sironi 2018)

Petropoulou & Sironi 2018

Temporal Evolution of Relativistic Particle Distribution

Blazar Flares Via Plasmoids

С

Α

Our Emission Model

- Use 2D PIC simulation results of relativistic magnetic reconnection
- PIC governs majority of model parameter few free parameters (e.g. B-field, size of reconnection layer, strength of external radiation fields, orientation of reconnection layer)
- Compute the emission from the entire reconnection layer model BL Lacs & FSRQs

eXtreme19- Radiative Signature of Reconnection - I. Christie

Individual Plasmoid Spectra & Light Curves

Individual Plasmoid Spectra & Light Curves

Plasmoid Size Dependence

0.1 - 300 GeV Light Curve

Fast flares, produced by medium-sized plasmoids, appear on top of a slow-evolving envelope developed by the largest plasmoids

Jet Lorentz factor: 12 Size of Reconnection layer: 10¹⁶ cm B-field: 2*G*

С

Α

R

eXtreme19– Radiative Signature of Reconnection – I. Christie

Additional Signatures

Summary

Outlook

- Our fundamentally-built model displays similar spectral features in FSRQs and BL Lacs!
- Requires few free parameters
- Can produce the fast (minutes) timescale and long (days) flares observed in many blazars!

- Numerous comparisons with observations (e.g. PSDs, correlation, flaring statistics) to come!
- PIC simulations of proton-electron & pair plasmas
- Inclusion of Hadronic components within radiative model

arXiv: 1807.08041

ichristi231@gmail.com