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Relativistic Shocks in Jets

Γb Γa

• Internal Shocks: likely sites 
of relativistic particle 
acceleration. 

• Most likely mildly relativistic, 
βγ ~ 1

• In most works: Simple 
power-law or log-parabola 
electron spectra (from Fermi 
I / II acceleration) assumed 
with spectral index (~ 2) put 
in “by hand”. Jet of M87 at different wavelengths



Monte-Carlo Simulations of Diffusive 
Shock Acceleration (DSA)

• Gyration in B-fields and diffusive 
transport (pitch-angle diffusion) 
modeled by a Monte Carlo 
technique.

• Shock crossings produce net 
energy gains (evident in the 
increase of gyroradii) according 
to principle of first-order Fermi 
mechanism.

(Summerlin & & Baring 2012) 

• Pitch-angle diffusion parameterized through a mean-free-path (λpas) 
parameter η (p):

λpas = η(p)*rg = η0 (p/p0)α                   (α ≥ 1)



Shock Acceleration Injection Efficiencies

• Non-thermal particle spectral index and thermal-to-non-
thermal normalization are strongly dependent on η0, α,
and B-field obliquity!

Baring et al. (2017)



Acceleration Indices for Oblique Shocks

(Summerlin & Baring 2012)

• Non-thermal spectra as hard as n(p) ~ p-1 achievable for 
moderately sub-luminal shocks.



Constraints from Blazar SEDs
Synchrotron peak ↔ γmax

Balance tacc ~ η(γ) ωgyr(γ)-1

with radiative cooling time scale

If synchrotron cooling dominates:

γmax ~ B-1/2 [η(γmax)]-1/2

⇒ hνsy ~ 100 δ [η(γmax)]-1 MeV    (independent of B-field!) 



Constraints from Blazar SEDs
hνsy ~ 100 δ [η(γmax)]-1 MeV    (independent of B-field!) 

⇒ Need large η(γmax) to obtain synchrotron peak in 
optical/UV/X-rays

⇒ But: Need moderate η(γ ~ 1) for efficient injection of 
particles into the non-thermal accelerations scheme

⇒ Need strongly energy dependent pitch-angle 
scattering m.f.p., with α > 1

⇒ For Extreme HBLs: η(γ) still small at ultra-relativistic 
energies

⇒ Effective pitch-angle scattering out to ultra-relativistic 
energies.



Electron Evolution Time Scales



Time-Dependent Electron Evolution 
with Radiative Energy Losses

Acceleration time scale: 

𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾 = 𝜂𝜂 (𝛾𝛾) 𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔 = 𝜂𝜂(𝛾𝛾) 2𝜋𝜋 𝛾𝛾 𝑚𝑚𝑒𝑒 𝑐𝑐
𝑒𝑒𝑒𝑒

≪ 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑
For almost all electrons 

⇒ Use shock-accelerated electron spectrum as instantaneous 
injection Qe(γ);

⇒ Solve Fokker-Planck Equation for electrons:

= - (γ ne) + Qe (γ,t) -______ __∂ne (γ,t)
∂t

∂
∂γ

. ______ne (γ,t)
tesc,e



Numerical Scheme
• Injection spectra from turbulence characteristics + MC simulations of DSA
• Injection from small acceleration zone (shock) into larger radiation zone
• Time-dependent leptonic code based on Böttcher & Chiang (2002), 
• Radiative processes: 

– Synchrotron
– Synchrotron self-Compton (SSC)
– External Compton (EC: dust torus + BLR + direct accretion disk)

Γ

βs

Shock injection “on” for 
0 < ∆t’ < L’/v’s

L’

Qe,s(γ,t’) = Qe,s(γ) H(t’; 0, ∆t’)



Typical flare durations 
~ minutes – a few hours

Example: 
HBL Mrk 501

Prototypical TeV BL Lac 
object (with Mrk 421)

(Furniss et al. 2015)



λpas = 250 rg γ0.5

Example: HBL Mrk 501

Baring et al. (2017, MNRAS)

B = 0.075 G
δ = 30
R = 1.5*1015 cm
-> ∆t’ ~ 105 s
-> ∆tobs ~ 1 h



HBL Mrk 501 Flare 
Spectral Evolution



Model Light Curves



Hardness-Intensity Diagrams

Counter-clockwise spectral hysteresis, as expected if 
tacc << tcool, tdyn

Sy. (LE)

SSC (LE)



Discrete Correlation Functions

• Optical poorly 
correlated with 
other bands

• Strong (~ 0 lag) 
correlation 
between X-rays 
and VHE

• Correlation 
between X-rays 
and GeV γ-rays 
(X-rays lead by 
~ 1 hr)

• Correlation between GeV and TeV (TeV leads by ~ 1 hr)



Summary

1. Coupled MC Simulations of Diffusive Shock Acceleration and radiation 
transport reveal strongly energy-dependent mean-free-path to pitch-
angle scattering.

2. Time-dependent simulations of shock-in-jet model with realistic particle 
injection from diffusive shock acceleration:

3. Characteristic counter-clockwise spectral hysteresis in all spectral 
bands.

4. Extreme HBLs indicate effective pitch-angle scattering out to ultra-
relativistic energies. 

Supported by the South African Research Chairs Initiative (SARChI) of the Department 
of Science and Technology and the National Research Foundation of South Africa. 
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Implications for Shock-Induced Turbulence
Gyro-resonance condition:    λres ~ p 

=> Higher-energy particles interact with longer-wavelength turbulence

k = 2π/λ
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)

Stirring Scale ~ R

kstir ~ 2π/R

Dissipation Scale

Turbulence level decreasing with increasing distance from the shock
⇒ High-energy (large rg) particles “see” reduced turbulence 
⇒ Large λpas



Example: 
FSRQ 
3C279

Extended 
flaring period 
2013 – 2014 

Variability 
time scale 
~ 1 day

(Hayashida et al. 2015)



Example: FSRQ 3C279 (2013 – 2014)

A = Low State

C = Flare, ∆Fγ / Fγ ~ ∆Fopt / Fopt

B = 0.65 G
δ = 15
R = 1.8*1016 cm
→ ∆t’ ~ few*105 s
→ ∆tobs ~ few hr

γ-rays EC (Dust 
Torus) dominated:

u = 4*10-4 erg/cm3

TBB = 300 K

λpas = 300 rg γ2

Note: Flares with strongly increasing Compton dominance would 
require additional parameter changes. 



3C279 – Flare C



3C279 – Flare C
Model Light Curves



3C279 – Flare C
Hardness-Intensity Diagrams

Sy. (LE)

Sy. (HE)

SSC (LE)

EC (HE)



3C279 – Flare C
Discrete Correlation Functions

• Optical and γ-rays 
well correlated 
(0 lag)

• X-rays and radio well 
correlated (0 lag)

• X-rays and radio lag 
optical + γ-rays by 
~ ½ hr)
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