

Extreme blazars and their TeV gamma-ray emission: are they a unique population?

<u>Luca Foffano</u>, Elisa Prandini, Alberto Franceschini, Simona Paiano

> eXtreme19, Padova January 22nd, 2019

Overview

- Main observational differences in the broad-band SEDs of EHBLs
- A new sample of hard X-rays selected EHBLs
- Are we facing with a population of EHBLs?
- Looking for new TeV extreme blazars candidates

Luca Foffano University and INFN of Padova

3

The idea

Luca Foffano University and INFN of Padova

6

So many differences...

- The most known EHBL are the **hard-TeV sources** (e.g. 1ES 0229+200):
 - hard TeV spectrum, low TeV variability, only few sources
- There are a lot of EHBLs that are not hard-TeV sources (e.g. PKS 0548-322, 1ES 1426+428): decreasing spectrum at TeV energies
- Some HBLs show EHBL-like behavior when flaring (e.g. Mrk 501, 1ES 1218+304, 1ES 1959+650, 1ES 2344+514):

decreasing spectrum at TeV energies, high TeV variability

Is there a population of EHBLs behind these differences?

10

A new sample of

hard X-ray selected EHBLs

Luca Foffano University and INFN of Padova

- Find a sample of good **EHBL representatives**
- Compare the broad-band spectral properties
- Find out the most important differences, e.g.:
 - Spectral properties in X-rays and HE
 - > Relation between HE and VHE spectra
 - > Relation between the synchrotron peaks

14

TeV gamma-ray detected EHBLs

Luca Foffano University and INFN of Padova

Sample of TeV-detected sources

15

#	Swift-BAT name	Counterpart	$ m Log~ v_{peak}^{ m sync}$
			(Hz)
1	SWIFT J0232.8+2020	1ES 0229+200	$18.5 \ _{-}^{+} \ 0.2$
2	SWIFT J1136.7 $+6738$	RX J1136.5 $+6737$	$18.2 \ _{-}^{+} \ 0.6$
3	SWIFT J1428.7 $+4234$	$1 ES \ 1426 + 428$	$18.0 \ ^+ \ 0.2$
4	SWIFT J1221.3 $+3012$	1 ES 1218 + 304	$17.9\ ^+\ 0.2$
5	SWIFT J0036.0 $+5951$	$1ES \ 0033 + 595$	$17.9 \ _{-}^{+} \ 0.2$
6	SWIFT J0710.3 $+5908$	3FGL J0710.3+5908	$17.8 \ ^+ \ 0.2$
7	SWIFT J0550.7-3212A	PKS 0548-322	$17.8 \ ^+ \ 0.2$
8	SWIFT J2346.8 $+5143$	$1 ES \ 2344 + 514$	$17.7 \ ^+ \ 0.4$
9	SWIFT J1654.0 $+3946$	Mrk 501	$17.7 \ ^+_{-} \ 0.2$
10	SWIFT J0349.2-1159	1 ES 0347 - 121	$17.7 \ ^+ \ 0.4$
11	SWIFT J1103.5-2329	$1 ES \ 1101-232$	$17.7 \ ^+ \ 0.2$
12	SWIFT J2359.0-3038	H 2356-309	$17.6 \ ^+ \ 0.2$
13	SWIFT J0507.7 $+6732$	1 ES 0502 + 675	$17.5 \ ^+_{-} \ 0.2$
14	SWIFT J1959.6 $+6507$	1 ES 1959 + 650	$17.4\ ^+\ 0.2$
15	SWIFT J0136.5 $+3906$	B 30133+388	$17.4\ ^+\ 0.2$
16	SWIFT J2009.6-4851	PKS 2005-489	$17.0\ ^+\ 0.9$
17	SWIFT J2056.8 $+4939$	RX J2056.6 $+4940$	$17.0\ ^+\ 0.9$
18	SWIFT J1104.4+3812	Mrk 421	$17.0\ ^+\ 0.3$

Sample of 18 TeV gamma-ray detected EHBLs

Luca Foffano University and INFN of Padova

Comparing the SEDs

16

Superimposition of all the SEDs with normalization at 10¹⁷ Hz EBL deabsorbed data (Franceschini + 17)

Luca Foffano University and INFN of Padova

22/01/19

TeV gamma-ray slopes

18

19

Synchrotron peak frequency vs TeV gamma-ray slope

Luca Foffano University and INFN of Padova

20

Synchrotron peak frequency vs TeV gamma-ray slope

Luca Foffano University and INFN of Padova

Synchrotron peak frequency vs TeV gamma-ray slope

We find at least **three types** of EHBLs

- **HBL-like** objects \rightarrow Their IC peak is clearly distinguishable below the TeV band
 - Probably characterized by higher flux variability (e.g. Mrk 501) with respect to hard-TeV
- **Transitional** objects \rightarrow Their IC peak probably peaks in the 1-10 TeV band
 - > Moderate flux variability?
- **Hard-TeV** objects \rightarrow Their IC peak goes above about 10 TeV
 - Generally characterized by low flux variability

Luminosity

Luca Foffano University and INFN of Padova

22/01/19

22

23

Synchrotron peak luminosity vs TeV gamma-ray slope

Luca Foffano University and INFN of Padova

24

TeV gamma-ray undetected EHBLs

Luca Foffano University and INFN of Padova

Next candidates for Cherenkov telescopes?

25

#	Swift-BAT name	Counterpart	${\rm Log} \; v_{\rm peak}^{\rm sync}$
			(Hz)
1	SWIFT J2251.8-3210	1RXS J225146.9-320614	$18.3 \ ^+ \ 0.3$
2	SWIFT J0733.9+5156	3FGL J0733.5+5153	18.3 $^+$ 0.2
3	SWIFT J0244.8-5829	BZB J0244-5819	$18.2\ _{-}^{+}\ 0.3$
4	SWIFT J0709.3-1527	PKS 0706-15	$18.0\ _{-}^{+}\ 0.2$
5	SWIFT J0156.5-5303	RBS 259	$18.0\ _{-}^{+}\ 0.2$
6	SWIFT J0353.4-6830	PKS 0352-686	$18.0\ _{-}^{+}\ 0.2$
7	SWIFT J0122.9 $+3420$	1ES 0120 + 340	17.7 $^+$ 0.2
8	SWIFT J1417.7 $+2539$	BZB J1417 $+2543$	17.7 $^+$ 0.2
9	SWIFT J0640.3-1286	TXS 0637-128	17.7 $^+$ 0.2
10	SWIFT J2246.7-5208	RBS 1895	17.6 $^+$ 0.2
11	SWIFT J0213.7+5147	$1\mathrm{RXS}\ \mathrm{J}021417.8{+}514457$	17.6 $^+$ 0.2
12	SWIFT J1031.5 $+5051$	$1 ES \ 1028 + 511$	17.5 $^+$ 0.2
13	SWIFT J0930.1 $+4987$	1 ES 0927 + 500	17.4 $^+$ 0.4
14	SWIFT J0326.0-5633	1 RXS J032521.8-56354	17.4 $^+$ 0.2

Sample of 14 TeV gamma-ray undetected EHBLs

26

• The HE gamma ray data should be on the rising part

of the IC hump \rightarrow **Power-law** is a good approximation

- The IC peak can be approximated adding a cut-off at $\mathrm{E}_{\mathrm{cut-off}}$

BUT

- **Redshift** is crucial due to EBL absorption
- The expected **cut-off** is very important

- \rightarrow We consider all available redshifts
- → We apply a (very) conservative cut-off at 1 TeV

Detectability by Cherenkov telescopes

- The HE gamma ray data should be on the rising part
 of the IC hump → Power-law is a good approximation
- The IC peak can be approximated adding a cut-off at $E_{cut-off}$

BUT

- **Redshift** is crucial due to EBL absorption
- The expected **cut-off** is very important

- \rightarrow We consider all available redshifts
- → We apply a (very) conservative cut-off at 1 TeV

Example: in 1ES 0229+200 the extrapolation works only if considering a E_{cut-off} = 12 TeV

22/01/19

Energy (eV)

28

UNIVERSITÀ DEGLI STUDI

DI PADOVA

Power-law + cut-off extrapolations on EBL deabsorbed data (Franceschini + 17)

22/01/19

LF+ (Submitted)

29

30

Conclusions

Luca Foffano University and INFN of Padova

INFN

Take home message

LF+ (Submitted)

- Extreme blazars are a new category of blazars with extreme spectral parameters
- We selected a **sample of 32 EHBLs** in the *Swift*-BAT 105-months catalogue
- We studied the TeV gamma-ray detected blazars, finding hints of **sub-classification**
- Need to increase the population of TeV gamma-ray detected EHBLs
- We performed extrapolations in order to find new TeV EHBL candidates
- Good targets also for the current generation IACTs
- New simultaneous observations would be crucial, especially at TeV energies
- Next steps: **interpretation** of the results in term of jet emission models

Luca Foffano University and INFN of Padova

INFN

32

Take home message

LF+ (Submitted)

Thank you!

- Extreme blazars are a new category of blazars with extreme spectral parameters
- We selected a **sample of 32 EHBLs** in the *Swift*-BAT 105-months catalogue
- We studied the TeV gamma-ray detected blazars, finding hints of **sub-classification**
- Need to increase the population of TeV gamma-ray detected EHBLs
- We performed extrapolations in order to find new TeV EHBL candidates
- Good targets also for the current generation IACTs
- New simultaneous observations would be crucial, especially at TeV energies
- Next steps: interpretation of the results in term of jet emission models

