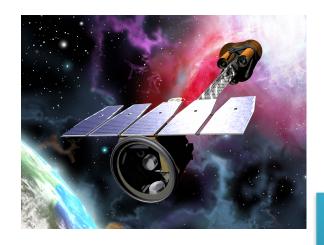


Blazars under the lens of X-ray polarimetry: perspectives for the IXPE mission

Laura Di Gesu (Italian Sp<mark>a</mark>ce Agency)

Use or disclosure of the information contained in this presentation is competition sensitive and subject to the restrictions on the Restriction Notice and Restriction Table slides of this document


IXPE IN A NUTSHELL

(SEE ALSO MULERI'S AND SOFFITTA'S TALK TOMORROW)

- Bilateral collaboration between NASA and ASI.
- Selected by NASA in 2017, launch expected in 2021.
- Baseline duration of 2 years.
- It will be equipped with 3 Gas Pixel Detectors, sensitive to the polarisation of incoming X-ray photons in the 2—8 keV band.
- First mission since OSO-8 (1975) to be sensitive to (linear) X-ray polarisation.
- Thanks to the GPDs, IXPE will increase the sensitivity of the X-ray polarimeter on-board of OSO-8 by 2 orders of magnitude, allowing *observations* of a variety of astrophysical sources, including *blazars*.

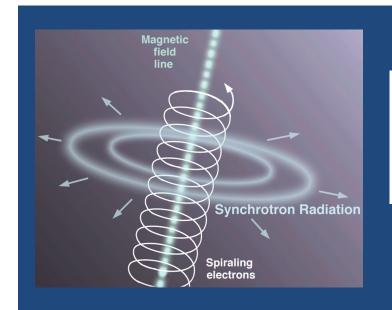
THE IXPE MISSION

new observables

P: polarization degree(%)

θ: polarization angle(°)

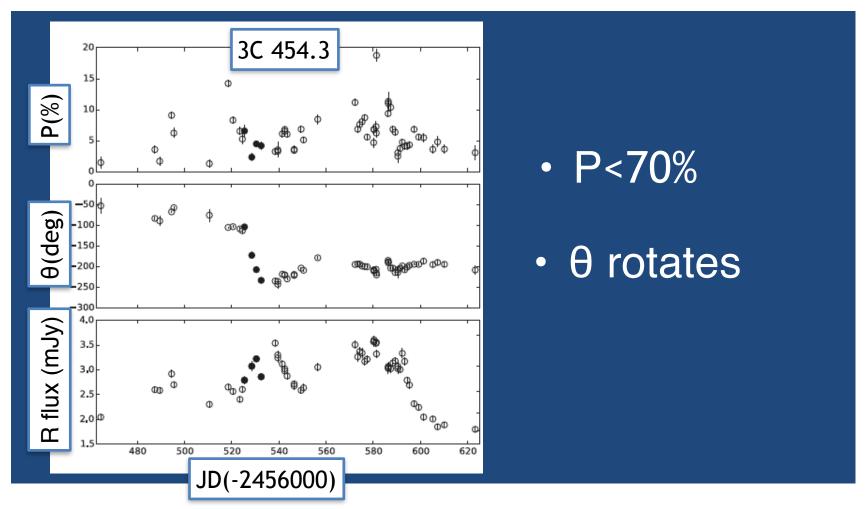
...in the 2—8 keV band


MINIMUM DETECTABLE POLARISATION

$$MDP = \frac{4.29}{M} \sqrt{\frac{R_S + R_B}{R_S^2 t}}$$

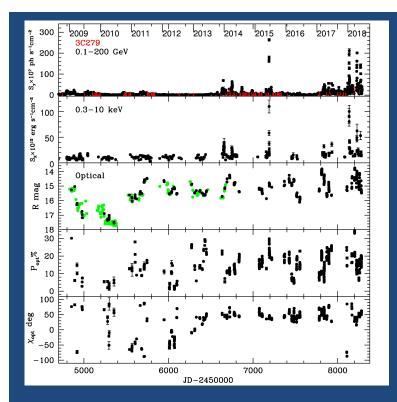
- M: instrumental modulation factor
- R_S: source count-rate
- R_B: background count-rate
- t: exposure time

POLARISATION OF SYNCHROTRON RADIATION

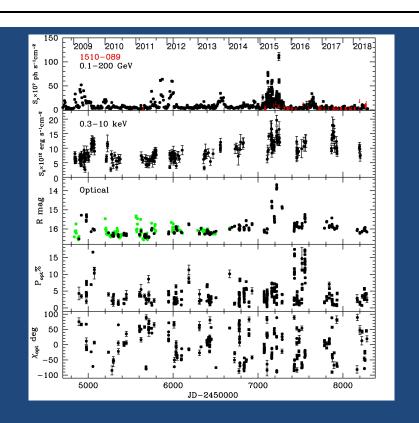


$$\Pi = \frac{p+1}{4} \frac{\Gamma\left(\frac{p}{4} + \frac{7}{12}\right)}{\Gamma\left(\frac{p}{4} + \frac{19}{12}\right)} = \frac{p+1}{4\left(\frac{p}{4} + \frac{7}{12}\right)} = \frac{p+1}{p+\frac{7}{3}}$$

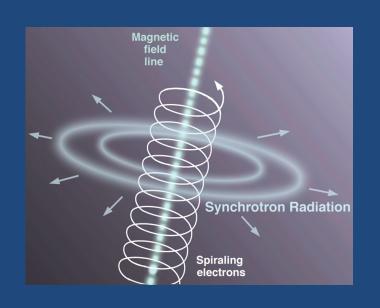
In a uniform B, the P depends on the index p of the energy distribution of the emitting particles i.e. for p=2.5, P=70%



POLARISATION STUDIES IN THE OPTICAL

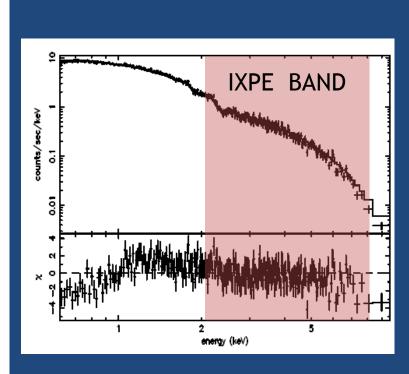


A VARIETY OF TEMPORAL BEHAVIOUR


3C 279: moderate polarisation (even > 10%) sometimes peaking during flares.

1510-089: low polarisation (2%) that may rise after flare

THE SIMPLE SYNCHROTRON CASE FOR HSP



$$\theta_x \sim \theta_{opt} \ P_X \sim P_{opt}$$

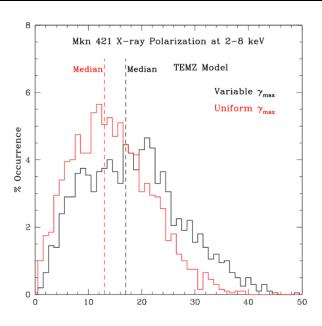
....if X-ray and optical emission regions are one and the same.

SIMULATING THE AVERAGE STATE OF MRK 421

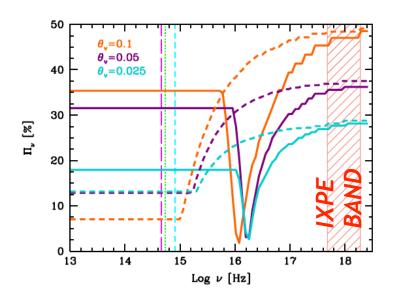
Tramacere+07

- •single Γ=2.5 adequate above 2 keV
- •Flux (2-10 keV)= 3×10^{-10} erg s-1 cm²= 10 mcrab
- $\bullet P_x = P_{opt} = 5\%$
- Variable exposure time

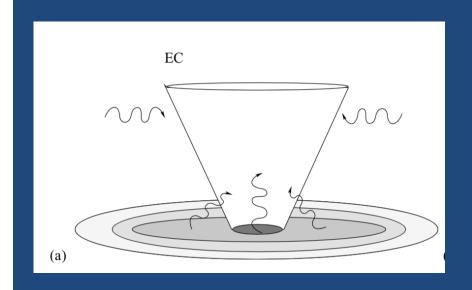
<u>GOAL: at least 3σ</u> <u>determination of P</u>



SIMULATING THE AVERAGE STATE OF MRK 421

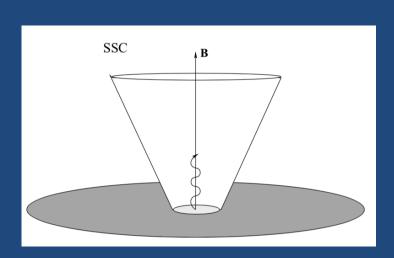

EXPOSURE:	MDP:	RESULTS: (1σ errors are quoted)
10 ks	7 %	P < 6 %
20 ks	5%	$P = 4 \pm 2\% \ \theta = 50^{\circ} \pm 10^{\circ}$
50 ks	3%	$P = 5 \pm 1 \% \ \theta = 47^{\circ} \pm 5^{\circ}$
550 ks	<1%	$P = 4.6 \pm 0.4 \% \ \theta = 44^{\circ} \pm 2^{\circ}$

BEYOND THE SIMPLE SCENARIO:


In the framework of turbulent jet model (Marscher+13), predicted X-ray polarisation is up to 20%, depending on how the maximum electron energy relates to the direction of B relative the shock front.

X-ray polarisation up to 50% is predicted for shocks occurring in a weakly magnetized flow (Tavecchio+18).

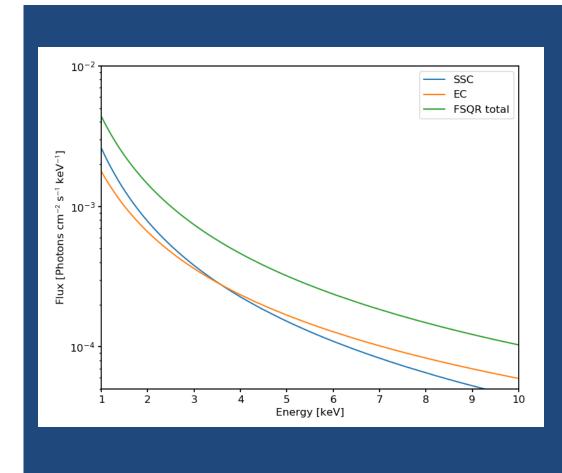
PROCESSES IN FSRQ: EXTERNAL COMPTON



P increases with the viewing towards the jet (Mc Namara+09)

...practically unpolarised in blazars

PROCESSES IN FSRQ: SYNCHROTHRON SELF COMPTON



$$P_X \sim 1/2 P_{opt} \ \theta_X \sim \theta_{opt}$$

SSC scattering preserves the polarisation angle and a large fraction of the polarisation degree of the incoming radiation (Mc Namara+09, Celotti&Matt 1994)

SIMULATING THE SSC+EC SCENARIO

- $\bullet \Gamma(SSC)=1.8$
- • $\Gamma(EC)=1.5$
- Pssc=10%
- P_{EC}=0
- Variable flux

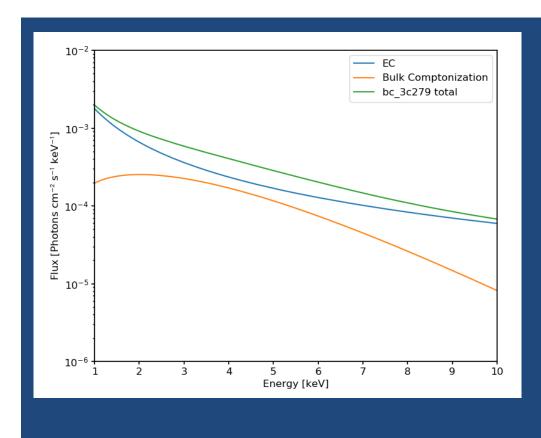
GOAL: at least

3σ determination

of P in 500 ks

SIMULATING THE SSC+EC SCENARIO:

EXPOSURE:		RESULTS: (1σ errors are quoted)
500 ks	2×10^{-11}	$P = 5 \pm 2\% \ \theta = 50^{\circ} \pm 10^{\circ}$
500 ks		$P = 6 \pm 1 \% \ \theta = 44^{\circ} \pm 8^{\circ}$
500 ks	2.5×10^{-11}	$P = 5 \pm 1\% \theta = 50^{\circ} \pm 6^{\circ}$

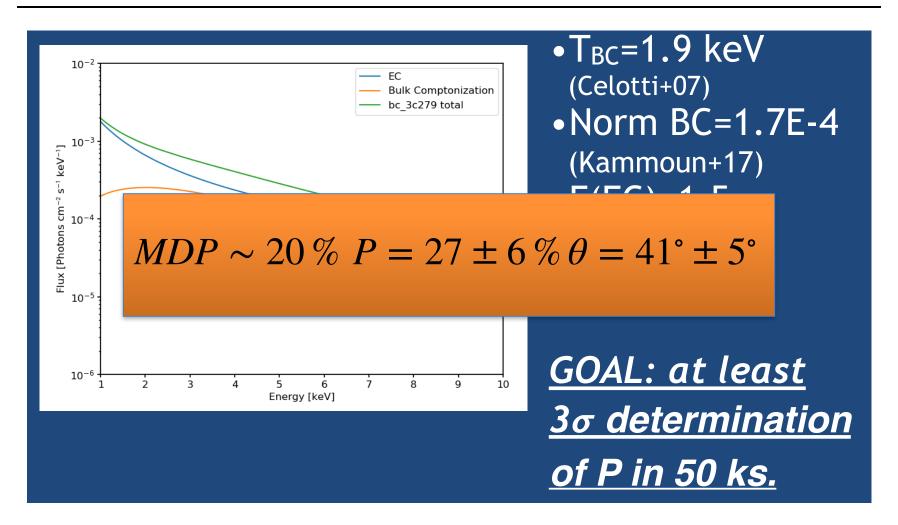


BEYOND THE SIMPLE SCENARIO:

- •There are reasons to expect <u>higher X-ray polarisation</u> if, for instance:
- If <u>hadronic processes</u> are present in the jet, then the X-ray polarisation is predicted to be high because of the contribution of synchrotron emission from protons (e.g. Zhang&Bottcher+13, Paliya+18).
- Scattering of BLR photons from a shell of cold electrons has been proposed as a possible source of transient (1 day) soft (Celotti+07), highly-polarised (Begelman&Sikora+87) X-ray radiation in blazars. This "Bulk Comptonization" model was used to explain the unusual "soft excess" seen in few FSRQs (e.g, De Rosa+2008, Kammoun+2017).

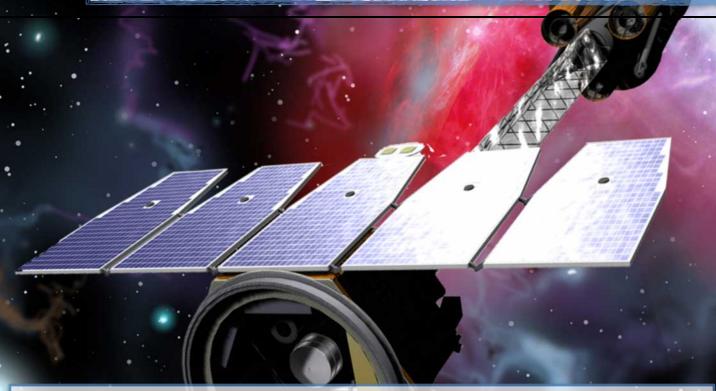
SIMULATING BULK COMPTONIZATION IN E.G. 3c 279

- T_{BC}=1.9 keV (Celotti+07)
- •Norm BC=1.7E-4 (Kammoun+17)
- • $\Gamma(EC)=1.5$
- P_{BC}=50%
- P_{FC}=0


GOAL: at least

3σ determination

of P in 50 ks.



SIMULATING BULK COMPTONIZATION IN E.G. 3c 279

....STAY TUNED FOR 2021

THANKS FOR YOUR ATTENTION!