2BIGB Sample

Bruno Arsioli - IFGW Unicamp, Brazil

Co-authors: Dr. Yu-Ling Chang, Taiwan & Msc. Student Musiimenta Blessing, Mbarara Univerty, Uganda

Extreme19 Jan. 22, 2019. Padova - IT

What is the 2BIGB sample?

- BIGB Brazil ICRA-Net
 Gamma-ray Blazar catalog (High Synchrotron Peak)
- 3HSP + 10 yrs of Fermi-LAT (2008-2018)
- Binned Likelihood Analysis
- 500 MeV 500 GeV

Motivations

- Samples: Extreme & High Synchrotron Peak Blazars
- 1WHSP < 2WHSP < 3HSP
 n: 992
 1691
 2011
- Many bright (Syn) HSPs with no Gamma-ray counterpart
- Fermi cats: 1-3FGL & 1-3FHL
- Question: γ -Faint, or γ -Quiet?

2WHSP Synchrotron Peak & Gamma-ray Detection

- Histograms Log(nfn)-peak
- Detected vs. Undetected γ
- Bright HSPs: Seen in γ -rays
- Intermediary region
- Undetected: Log(nfn-Syn) similar to the detected ones
- Promising γ-rays candidates?

2WHSP Synchrotron Peak & Gamma-ray Detection

- Histograms Log(nfn)-peak
- Detected vs. Undetected γ
- Bright HSPs: Seen in γ -rays
- Intermediary region
- Undetected: Log(nfn-Syn) similar to the detected ones
- Promising γ-rays candidates?

- To answer that:
- Evaluation phase: 400 γ-rays candidates
- Selection based on Log(nfn)>-12.2 ; flux cut
- All well localised (Radio)
- Seeds for the γ-ray analysis: from multi-frequency data

- Seeds: Multi-frequency data
- Bring complementary information to the analysis
- Main ≠ with respect to the analysis done for FGL & FHL
- FGL & FHL seeds: Clustering Photon Counts
- Only based in γ -ray data

- Seeds: Multi-frequency data
- Bring complementary information to the analysis
- Main ≠ with respect to the analysis done for FGL & FHL
- FGL & FHL seeds: Clustering Photon Counts
- Only based in γ -ray data

1BIGB Results

- 400 seeds —> 400 Likelihood analysis
- **150 new** γ -ray signatures > 3 sigma
- TS map: Source emerge as pointlike signature
- 85 high-significance: TS>25
- 65 low-significance: 10<TS<25
- Catalog: PowerLaw Model
- Discussion:

1BIGB Results

- 400 seeds —> 400 Likelihood analysis
- 150 new γ -ray signatures > 3 sigma
- TS map: Source emerge as pointlike signature
- 85 high-significance: TS>25
- 65 low-significance: 10<TS<25
- Catalog: PowerLaw Model
- Discussion: Solving Diffuse Gamma-ray Background

Searching for γ -ray signature in WHSP blazars

Fermi-LAT detection of 150 excess signal in the 0.3-500 GeV band

B. Arsioli^{1, 2, 3} and Y.-L. Chang^{1, 2}

¹ ASI Science Data Center, ASDC, Agenzia Spaziale Italiana, via del Politecnico snc, 00133 Roma, Italy e-mail: bruno.arsioli@asdc.asi.it

² Sapienza Università di Roma, Dipartimento di Fisica, Piazzale Aldo Moro 5, 00185 Roma, Italy

³ ICRANet-Rio, CBPF, rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil

Received 11 April 2016 / Accepted 1 September 2016

ABSTRACT

1BIGB SEDs

- Algo. to perform SED calculation in large scale
- Cluster resources: IcraNet +
 IFGW Unicamp
- Collaboration with CTA team:
 Extrapolation to VHE
- SED Data available at BSDC Brazilian Science Data Center

Extreme & High Synchrotron Peaked Blazars at the limit of *Fermi*-LAT detectability: the γ -ray spectrum of 1BIGB sources

B. Arsioli^{1,2,5}*, U. Barres de Almeida^{3,5}†, E. Prandini⁴‡, B. Fraga^{3,5}, L. Foffano⁴, ¹Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas (UNICAMP), Rua Sérgio Buarque de Holanda 777, 13083-859 Campinas, Brazil ²Science Data Center della Agencia Spaziale Italiana, SSDC - ASI, Rome, Italy ³Centro Brasileiro de Pesquisas Físicas (CBPF), Rua Dr. Xavier Sigaud 150, 22290-180 URCA, Rio de Janeiro, Brasil ⁴University of Padova, Department of Physics and Astronomy, and INFN sez. Padova, Italy ⁵ICRANet-Rio, CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 URCA, Rio de Janeiro, Brazil

3HSP Synchrotron Peak & Gamma-ray Detection

- Preliminary 4FGL = FL8Y
- FL8Y reports TS down to 10 ~5000 sources
- Cross-match 3HSP to 1-3FGL & FL8Y sources
- ~970 3HSP have a γ-ray counterpart
- ~1040 Undetected
- Histograms Log(nfn)-peak
- Intermediary region: Promising γ-rays candidates!

3HSP Synchrotron Peak & Gamma-ray Detection

- Preliminary 4FGL = FL8Y
- FL8Y reports TS down to 10 ~5000 sources
- Cross-match 3HSP to 1-3FGL & FL8Y sources
- ~970 3HSP have a γ-ray counterpart
- ~1040 Undetected
- Histograms Log(nfn)-peak
- Intermediary region: Promising γ-rays candidates!

- This time: Instead of selecting a 3HSP subsample...
- Work with the entire 3HSP sample - Compare FL8Y
- Integrate over10yrs Fermi-LAT
- E range: 500 MeV 500 GeV Improved PSF
- Improve Computation Time
- Prevent Spurious detection driven by diffuse background

2BIGB: Preliminary Results

- Capture cases with 1-3FGL & FL8Y counterparts, ~970
- Extra ~200 new signature with respect to FL8Y (+20%)
- Extra detection due to improved sensitivity but... not only that
- Intersection Region:
- Multi-frequency as complementary method
- Improve the efficiency of detection close to Fermi-LAT sensitivity limit

2BIGB: Preliminary Results

- Capture cases with 1-3FGL & FL8Y counterparts
- Extra ~200 new signature with respect to FL8Y !
- Extra detection due to improved sensitivity but... *not only that*
- Intersection Region:
- Multi-frequency as complementary method
- Improve the efficiency of detection close to Fermi-LAT sensitivity limit

Power law model & fitting strategy

- Fit to $N_0\,$ and Γ
- Scan over pivot Energy:
 1 3 5 10 GeV
- N₀ (pre-factor) is the diff-flux calculated at E₀
- Minimise the error associated to fitting N₀ and Γ
- Improvement (1BIGB->2BIGB)

$$\frac{\mathrm{dN}}{\mathrm{dE}} = \mathrm{N}_0 \left(\frac{\mathrm{E}}{\mathrm{E}_0}\right)^{-\Gamma}$$

Comparing 2BIGB & FL8Y Photon Spectral Index

- 972 **2BIGB with counterpart** in 1-3FGL & FL8Y
- Mean Values < Γ > FL8Y : 1.90 ± 0.01
 2BIGB : 1.89 ± 0.01
- Similar as for 2WHSP-FGL sample: $< \Gamma > = 1.93$
- Preliminary: FGL + FL8Y

Distribution of Photon Spectral Index

- Mean ~ 1.9 2.0
- Similar as for 2WHSP-FGL sample: $<\Gamma > = 1.93$
- Preliminary: Still Cleaning
- Check all new-detection via TS maps

Ongoing...

2BIGB J111717.5+000633

- Validation of all new 2BIGB gamma-ray sources
- Inspect via TS maps
- Very Time Consuming: but...
 1/2 already done!
- Build their γ -rays SED

Message

- Multi-frequency data do unveil new gamma-ray source Complementary
- Fermi-LAT database is a great scientific achievement
- Initial phase: Seeds from Gamma-ray data only
- Important to prevent spurious association
- Currently: Good Understanding on the main pop. of γ-rays emitters
- Out of disk: Use AGN multi-frequency info to select seeds for Likelihood Analysis with Fermi-LAT

Perspectives

- Validation of all new sources (out of FL8Y)
- SED extrapolation to highest energies:
- Focus on 2BIGB-new
- *Collaboration with CTA Team*

Perspectives

- Apply Machine Learning Techniques
- Train CNN to detect faint pointlike sources
- Train sample: Scramble Source
 Data + Counts from gtsrcmap
- Distinguish Signal/Background based on counts-density
- Plugin Multi-Frequency Info within Clustering-Structure

Example: 1-2BIGB source

Declination

3

1BIGB J151041.0+333503 *Out of 1-3FGL & FL8Y*

2BIGB - Detected & Confirmed via TS maps

Right ascension

TS Surfaces: 10, 12, 14

4.4 6.4 7.9 9.1 10 11 12 13 14

Motivations

Recap. From 1st Slides

- Samples: Extreme & High Synchrotron Peak Blazars
- 1WHSP < 2WHSP < 3HSP
 n: 992
 1691
 2011
- Many bright objects with no Gamma-ray counterpart
- Fermi cats: 1-3FGL & 1-3FHL
- Question: γ -Faint, or γ -Quiet

2WHSP J151041.0+333503

Motivations

Recap. From 1st Slides

- Samples: Extreme & High Synchrotron Peak Blazars
- 1WHSP < 2WHSP < 3HSP
 n: 992
 1691
 2011
- Many bright objects with no Gamma-ray counterpart
- Fermi cats: 1-3FGL & 1-3FHL
- Question: γ -Faint, or γ -Quiet

Thank you!

bruno.arsioli@ifi.unicamp.br

Why to work on the entire 3HSP sample

- Efficiency of Gamma-Gamma-Ray detection decrease with Log(nfn)
- Still, a complete analysis can review interesting sources
- Computation Time suffers 2x
 to 3x effect
- Doable in reasonable time

Comparing 2BIGB & FL8Y Photon Spectral Index

- 972 —> 2BIGB with counterpart in 1-3FGL & FL8Y and the second seco
- Mean Values
 FL8Y : 1.90 ± 0.01
 2BIGB : 1.89 ± 0.01
- Similar as for 2WHSP-FGL sample: $< \Gamma > = 1.93$
- Preliminary: Mix 1-3FGL & FL8Y Use only FL8Y, or 4FGL.

Value of a Multifrequency Approach

- Detection of TXS 0506+056
- High Energy astrophysical
 Neutrino Source
- How long would it take for an "IceCube-solo" detection?
- Clear example:multi-frequency approach as a powerful tool
- Optimize the discovery potential of current databases

