NEUTRINOS ON ICE 3LAC COUNTERPARTS TO ICECUBE NEUTRINOS ABOVE 100 TEV

FE KRAUSS, J. WILMS, K. MANNHEIM, K. DESOKAR, M. KADLER, M. KRETER * FELICIA.KRAUSS@UVA.NL

ANTON PANNEKOEK INSTITUTE

Papers in PDF link to journal article, slides available at https://fekrauss.com

How hadronic can blazars be and still be consistent with IceCube?

Krauß F. et al. (2014)

Krauß F. et al. (2014)

What is the average percentage of hadronic emission?

4%

Are all sources equally hadronic?

METHOD

- SEDs of large sample of sources (179 3LAC blazars)
- Calculate neutrino estimates & compare to observed events

ICECUBE RESULTS

IceCube Collaboration (2013, 2013, 2014, 2015)

ICECUBE RESULTS

IceCube Collaboration (2013, 2013, 2014, 2015)

IDENTIFYING NEUTRINO COUNTERPARTS

Identifying source unfeasible for most neutrinos Calculate neutrino emission for large number of sources Felicia Krauß

DENTIFYING NEUTRINO COUNTERPARTS

8a

Assumptions of Neutrino Calculation

- All of high-energy emission is of hadronic origin
- All of the neutrinos emitted at one energy (delta-peak)

→ Calculated numbers are maximum possible number

RESULTS

PREVIOUS RESULTS

- Calorimetrically blazars can explain IceCube events
 - Krauß et al. (2014)
- First coincidence of blazar outburst and blazar: PKS 1424–418 and IC 35

Kadler, Krauß et al. (2016), Nature Physics

▶ (TXS 0506+056 and IC 170922A)

NEUTRINOS < 1 PEV

Krauß et al. (2018)

Calculate neutrino estimates N_{ν}

NEUTRINOS > 100 TEV: EXTREME HBL?

$$\nu_{\text{max}} = 1.29$$

15a

NEUTRINOS > 100 TEV: EXTREME HBL?

$$\nu_{\rm max} = 0.78$$

$$N_{\nu, \text{max, fullsky}} = 3637$$

maximum number

 $N_{
u,\text{max,fullsky}} = 3637$ $N_{
u,\text{spec,fullsky}} = 712$ maximum number powerlaw neutrino spectrum

 $egin{aligned} N_{
u, ext{max,fullsky}} &= 3637 \ N_{
u, ext{spec,fullsky}} &= 712 \ N_{
u, ext{f,fullsky}} &= 178 \end{aligned}$

maximum number powerlaw neutrino spectrum ν flavors, blazar physics

 $egin{aligned} N_{
u, ext{max,fullsky}} &= 3637 \ N_{
u, ext{spec,fullsky}} &= 712 \ N_{
u, ext{f,fullsky}} &= 178 \end{aligned}$

maximum number powerlaw neutrino spectrum ν flavors, blazar physics

178 » 10 (16)

10 cosmic events (/16): 8% of emission hadronic Considering unresolved blazars: $\sim 4\%$

First constraint on hadronic contribution to SED Is this consistent with previous results?

MULTIWAVELENGTH MODELING OF TXS 0506+056

Leptonic model

(Gao et al., 2018; Keivani et al., 2018)

Felicia Krauß

MULTIWAVELENGTH MODELING OF TXS 0506+056

Hadronic model

(Gao et al., 2018; Keivani et al., 2018)

Felicia Krauß

CONCLUSIONS

- Gamma-ray flux unreliable proxy of neutrino flux
- From IceCube constraints, we expect blazars to be ~ 4% hadronic on average
- Unclear whether different sources are less/more hadronic
- What is the contribution of blazars to IceCube neutrinos?

BACKUP

Neutrinos > 100 TeV

IC	E _{deposited} (TeV)	MJD	$\alpha_{\rm J2000.0}$ (°)	$\delta_{\rm J2000.0}$ (°)	ang. res.	morphology
2	$117^{15.4}_{-14.6}$	55351.4659661	282.6	-28	25.4	Shower
4	165.4 ^{19.8}	55477.3930984	169.5	-51.2	7.1	Shower
12	$104.1^{12.5}_{-13.2}$	55739.4411232	296.1	-52.8	9.8	Shower
13	252.7 ^{25.9}	55756.1129844	67.9	40.3	<1.2	Track
14	1040.7 ^{131.6}	55782.5161911	265.6	-27.9	13.2	Shower
17	$199.7^{27.2}_{-26.8}$	55800.3755483	247.4	14.5	11.6	Shower
20	1140.8 ^{142.8}	55929.3986279	38.3	-67.2	10.7	Shower
22	$219.5^{21.2}_{-24.4}$	55941.9757813	293.7	-22.1	12.1	Shower
26	210.0 ^{29.0}	55979.2551750	143.4	22.7	11.8	Shower
30	$128.7_{-12.5}^{13.8}$	56115.7283574	103.2	-82.7	8	Shower
33	384.7 ^{46.4} -48.6	56221.3424023	292.5	7.8	13.5	Shower
35	2003.7236.2	56265.1338677	208.4	-55.8	15.9	Shower
38	$200.5^{16.4}_{-16.4}$	56470.1103795	93.3	14	<1.2	Track
39	$101.3^{13.3}_{-11.6}$	56480.6617877	106.2	-17.9	14.2	Shower
40	$157.3^{15.9}_{-16.7}$	56501.1641008	143.9	-48.5	11.7	Shower
45	429.9 - 49.1	56679.2044683	219	-86.3	<1.2	Track
46	$158.0^{15.3}_{-16.6}$	56688.0702948	150.5	-22.3	7.6	Shower
48	$104.7^{13.5}_{-10.2}$	56705.9419933	213	-33.2	8.1	Shower
52	158.1 ^{16.3}	56763.5448147	252.8	-54	7.8	Shower

Obtain multiwavelength SEDs for all 3LAC counterparts

RESULTS FOR IC 35: VARIABILITY

Kadler, Krauss et al. (2016), Nature Physics

RESULTS FOR IC 35: VARIABILITY

Kadler, Krauss et al. (2016), Nature Physics

Felicia Krauß

RESULTS FOR IC 35: VARIABILITY

Kadler, Krauss et al. (2016), Nature Physics

 γ -ray flux

22c

RESULTS FOR IC 35: SED

 $N_{\nu} = 5.7$ (IceCube time range)

Kadler, Krauß et al. (2016), Nature Physics

Chance coincidence of TXS 0506+056

Significance of association: pre-trial: 4.1σ post-trial: 3.0σ

But: signalness ~0.5

Expected neutrinos during flare: 1.19 (Kreter, Kadler, Krauss et al., in prep.)

Chance coincidence of TXS 0506+056

Joint probability:

Null hypothesis: IC 35 & IC170922A are not from blazars $P_{IC170922A/TXS0506+056} = 1.8 \cdot 10^{-4} \sim 3.67\sigma$ $P_{IC35/PKS 1424-418} = 0.05 \sim 2\sigma$

 $p_{
m joint,Fisher}\lesssim 10^{-4}\gtrsim 3.9\sigma$ (Kadler, Krauss, Kreter et al., in prep.)

Multiwavelength modeling & previous neutrino data

Neutrinos before IC170922A

flare post-trial: 3.5σ IceCube (2018)

Neutrinos > 100 TeV

Fermi/LAT flux unreliable proxy of N_{ν}

Krauß et al. (2018)

Fermi/LAT flux unreliable proxy of N_{ν}

Krauß et al. (2018)