

24/1/2019

Hadronic Supercriticality and its application to Extreme Blazars

Ioulia Florou National & Kapodistrian University of Athens

Collaborators: Boula St. Petropoulou M. Kefala E. Mastichiadis A.

Physical Processes for spectral formation

The distribution function

Solving the energy conserving time dependent kinetic equations...

AM & Kirk 1995

Parameters that make the system operate linearly

Excessively used approach

The system is regulated by proton synchrotron.

This problem can become non-linear

Hadronic Supercriticality Unique and Overlooked property of hadronic models

 Threshold conditions for proton compactness
 Protons release energy with high radiative output in small timescales
 Lightcurves that might be associated with flares from compact astrophysical objects

Stern & Svensson 1991 Stern et. al 1992 Mastichiadis & Kirk 1992,1995 Petropoulou & Mastichiadis 2012,2018

Present work: explore the parameter space of Hadronic Supercriticality

s = 2

Physical quantity	Minimum value	Maximum value
R (cm) B (G)	10^{11} 10^{0}	10^{16} $10^{4.5}$
γmax	10 ³	10 ⁹

The parameters are

- ✓ The proton compactness lp
- $\checkmark~$ The source radius R
- ✓ The magnetic field strength B
- \checkmark The maximum proton energy
- \checkmark The slope of the proton distribution
- \checkmark The proton escape time scale

$$p, esc = 1000t_{cr}, \text{ where } t_{cr} = R/c$$

Relevance with the flaring events of compact Astrophysical Sources?

The behaviour of Hadronic Supercriticality

The system is sensitive to the change of the parameter values

The parameter space of hadronic supercriticality

 $t_{p,esc} = t_{p,cool}$

$$\gamma_{max} = constant$$
$$t_{app} = t_{esc}$$

✓ Search for the proton compactness for which the first flare appears at a timescale equal to the escape proton timescale

Relation between critical proton density, source radius and maximum proton energy

$$B^2R = \text{constant}$$

$$\gamma_{crit} = (\frac{2 B_{critical}}{B})^{1/3}$$

Mastichiadis & Kirk 1992

Application to Extreme Blazars

 Ejection of a power law distribution of relativistic electrons and protons

Parameters	Values
Source Radius	$10^{15} { m cm}$
Magnetic Field	31.4 G
$\gamma_{p,max}$	10^{7}
$\gamma_{e,max}$	10^{6}
	10^{-5}
l_e	$10^{-3.5}$
Proton Slope	1.8
Doppler factor	10

$L_e = 1.14 \ 10^{41} \ erg/sec$
$L_p = 5.7 \ 10^{43} \ erg/sec$

Application to extreme Blazars

Conclusions

•We perform a study of hadronic supercriticality in the context of a one zone model

•We explored the parameter space of hadronic supercriticality for a constant injection rate and investigate the dependence of the dynamical behaviour of the system to proton compactness, magnetic field, maximum proton energy and radius

•It is possible to apply this model to compact Astrophysical Objects, such as Blazars

Thank you for your attention!