All the MAGIC of extreme blazars

V. Fallah Ramazani¹, E. Prandini, C. Arcaro, L. Foffano, J. Becerra González, G. Bonnoli, and A. Stamerra for the MAGIC collaboration K. Asano

> ¹Tuorla Observatory, University of Turku, Turku, Finland vafara@utu.fi

Extreme19 conference Padova, Italy

V. Fallah Ramazani (Tuorla)

Why?

- They are under-represented by Fermi (too faint)
- Showing (sometimes extremely) hard TeV spectra
- VHE gamma rays make the difference
- Excellent probes for many science cases: EBL, IGMF, Blazar Sequence, Cosmic ray physics and ...
- Before 2010, only 4 sources were detected in VHE gamma rays

Aims?

- Extremeness, is a property or behaviour?
- Search systematically for new EHBLs
- Characterizing broadband SEDs of EHBLs
- Search for common behaviour

Challenges?

- The need of VHE γ -ray spectrum \implies Sensitivity of the instrument
- Study variability \Longrightarrow Observing time

MAGIC view

MAGIC Telescopes

- La Palma, Canary Islands 28°N, 18°W, Altitude 2200 m a.s.l.
- Energy range: 30 GeV to 100 TeV
- Integral sensitivity (> 220 GeV): (0.66 ± 0.03)% of Crab Nebula flux (50 h exposure)

- FoV: 3.5°
- Angular resolution: $\leq 0.07^{\circ}$
- Energy resolution: 16%

イロト イポト イヨト イヨト

Aleksić, J. et al., 2016 , Astroparticle Physics, Volume 72, p. 76-94

MAGIC ingredients

- MAGIC telescopes have been observing EHBLs since 2004
- A dedicated program for hunting new EHBLs was launched in 2011
- Candidate selection methods:
 - Empirical MWL prediction method Fallah Ramazani, V. et al., 2017 , A&A, 608A, 68F
 - X-ray and gamma-ray spectral behaviour Foffano, L. et al., MNRAS, Submitted
 - X-ray-to-radio flux ratio Bonnoli, G. et al., 2015 , MNRAS, 451, 611B
- MWL data during MAGIC campaigns for SED modelling

Leptonic model (SSC)

- Electron injection during the dynamical time-scale
- Synchrotron emission and cooling
 - Inverse Compton and cooling
 - Adiabatic cooling
 - Photon escape
 - No electron escape!

MAGIC observation log

From January 2011 to April 2018:

- ${\sim}180\,h$ of on new sources
- ${\sim}120\,h$ of on 1ES 0229+200
- 12 sources were observed
- 4 new TeV emitters
- I prototype
- 1 known TeV emitter
- 1 hint of signal
- 5 no signal

Source	Z	FoM	
TXS 0210+515	0.049	1.3	a
1ES 0229+200	0.139	2.0	
PGC 2402248	0.065	1.0	a,b
TXS 0637-128		2.5	-
BZB J0809+3455	0.083	0.3	
RBS 0723	0.198	1.3	a
1ES 0927+500	0.187	1.0	
RBS 0921	0.236	0.6	
1ES 1426+428	0.129	4.0	
1ES 2037+521	0.053	0.5	a
RGB J2042+244	0.104	0.8	-
RGB J2313+147	0.163	0.3	_

▶ < ∃ ▶</p>

a) New TeV emitter

b) Not included in population study

TXS 0210+515 (New announcement)

RBS 0723 (a.k.a. RGB J0847+115)

MAGIC detection on 15.01.2014

• Mirzoyan, R., 2014, ATel #5768

- $\Gamma_X = 1.79 \pm 0.03$
- $\Gamma_{3FGL} = 1.74 \pm 0.11$
- $F_{1-100 GeV} = (5.1 \pm 0.9) \times 10^{-10} {}_{\rm [ph/cm^2/s]}$
- $\Gamma_{VHE,obs} = 3.6 \pm 0.79$
- $F_{>300\,GeV} = (1.2 \pm 0.6) \times 10^{-12} {}_{\rm [ph/cm^2/s]}$

Preliminary

cm² s⁻¹ TeV⁻¹

1ES 2037+521

MAGIC detection on 01.10.2016

• Mirzovan, R., 2016, ATel #9582

- $\Gamma_X = 1.72 \pm 0.05$
- $\Gamma_{3FGL} = 1.89 \pm 0.21$
- $F_{1-100 GeV} = (3.9 \pm 0.1) \times 10^{-10} {}_{\rm [ph/cm^2/s]}$
- $\Gamma_{VHE,obs} = 2.33 \pm 0.18$

•
$$F_{>300 GeV} = (2.5 \pm 0.5) \times 10^{-12} {}_{\rm [ph/cm^2/s]}$$

TeV 10⁻⁹

10-10

10-11 nas /

10-12 10^{-13}

0 10⁻¹⁴

10-15

Observed

 $dF/dE = f_0^*(E/r)^{\alpha}$

 $\alpha = (-2.33 \pm 0.18)$

 $f_0 = (5.64 \pm 0.64) * 10^{-12}$

r = (0.40 ± 0.00) TeV

1ES 1426+428 (Known TeV emitter)

1ES 0229+200 (Prototype)

SED modelling results

- No firm VHE γ -ray \Rightarrow Upper limits of the VHE γ -ray spectra
- Quasi-simultaneous MWL data were used for modelling

	Г	B ₀	$L_{\rm e}$	$\gamma_{ m br}$	$\gamma_{\rm max}$	p_1	<i>p</i> ₂	$\varepsilon_{\rm syn,pk}$	$\varepsilon_{\rm IC,pk}$	CD*	$U_B/U_{ m e}^{\star\star}$
		G	$erg s^{-1}$					log eV	TeV		
1ES 0229+200	20	0.06	$1.1 imes10^{44}$	10 ⁶	$3 imes 10^8$	1.9	3.0	4.2	1.585	0.13	$2.5 imes10^{-3}$
1ES 1426+428	20	0.20	$1.3 imes 10^{44}$	—	$2 imes 10^6$	2.0	_	3.8	0.251	0.14	$2.6 imes10^{-2}$
RBS 0723	20	0.11	$4.9 imes10^{44}$	_	$2 imes 10^6$	2.2	—	3.7	0.251	0.37	$1.9 imes10^{-3}$
1ES 2037+521	20	0.10	$2.1 imes10^{44}$	—	$2 imes 10^7$	2.1	_	4.9	1.000	0.12	$3.9 imes10^{-3}$
RGB J2042+244	20	0.073	1.8 × 1📫	retin	3×10^5	2.0	_	2.7	0.158	0.36	$2.3 imes10^{-3}$
1ES 0927+500	10	0.13	$7.1 imes 10^{43}$	$3 imes 10^5$	$3 imes 10^6$	J .5	2.5	3.2	0.316	0.25	$2.3 imes10^{-2}$
BZB J0809+3455	10	0.04	$8.9 imes10^{43}$	10 ⁵	$3 imes 10^6$	1.8	3.0	2.0	0.100	0.84	$1.4 imes10^{-3}$
RGB J2313+147	20	0.09	$1.6 imes10^{44}$	$8 imes 10^4$	$2 imes 10^7$	2.0	3.5	2.1	0.079	0.37	$3.9 imes10^{-3}$
TXS 0210+515	20	0.04	$6.5 imes10^{44}$	10 ⁶	$2 imes 10^7$	2.5	3.0	3.9	0.199	0.18	$1.9 imes10^{-4}$
TXS 0637-128	10	0.25	$8.0 imes10^{43}$	$5 imes 10^5$	$2 imes10^7$	1.8	3.0	3.3	0.100	0.20	$8.1 imes10^{-2}$

* Ratio of νL_{ν} at the IC peak to that at the synchrotron peak.

** Value evaluated at the radius where the electron injection shuts down.

- Minimum IC peak of sample \simeq 79 GeV
- Minimum synchrotron peak of sample $\simeq 2.42 \times 10^{16}$ Hz

Common properties: Magnetization

Asano, K. & Hayashida, M., 2018, ApJ, 8611, 31A

- Low magnetization is common in BL Lacs
- But EHBLs show much lower than average U_B/U_e (<10% of average)

Common properties: X-ray

- Variability amplitude < 0.5 for all sources
- Largest F_{var} is for 1ES 0229+200
- For some sources *F_{var}* is affected by low statics

- Strong anti-correlation between spectral index and flux
 - \Rightarrow Pearson coefficient in range of -0.93 and -1.00
- Harder-when-brighter behaviour

MAGIC news (PGC 2402248)

Conclusions

- MAGIC doubled the size of EHBL TeV emitters sample
- When modelled with SSC:
 - EHBLs show high value for $\gamma_{\textit{break}}$, $\gamma_{\textit{max}}$, and synchrotron photon energy
 - In comparison with other blazars, they have weaker magnetic field
- EHBLs show moderate variability in X-ray with $F_{var} \leq 0.5$
- 1ES 2037+521 is the most similar one to the prototype when comparing the shape of SEDs
- TXS 0210+515 is the most extreme source in our sample when comparing GeV-TeV spectra
- Except for the prototype, which have a very long exposure, no variability was detected in VHE $\gamma\text{-}\mathrm{ray}$ from our sample

Take home message:

The VHE $\gamma\text{-ray}$ variability of EHBLs should be investigated (CTA will help see Ulisses talk)

< D > < P > < P > < P >

MAGIC and CTA (LST1) Thank You!!

Image credits: Alice Donini (Universitá di Udine)

V. Fallah Ramazani (Tuorla)