

Radio Core Dominance in Fermi Blazars Matt Zhiyuan Pei (裴致远) Dottorando@ Dipartimento di Fisica e Astronomia, Università di Padova & INFN

Co-with Prof. Junhui Fan (Guangzhou University), Prof. Denis Bastieri (PD) and Hubing, Xiao (PD) etre Mel 22/01/2019, Padova, IT

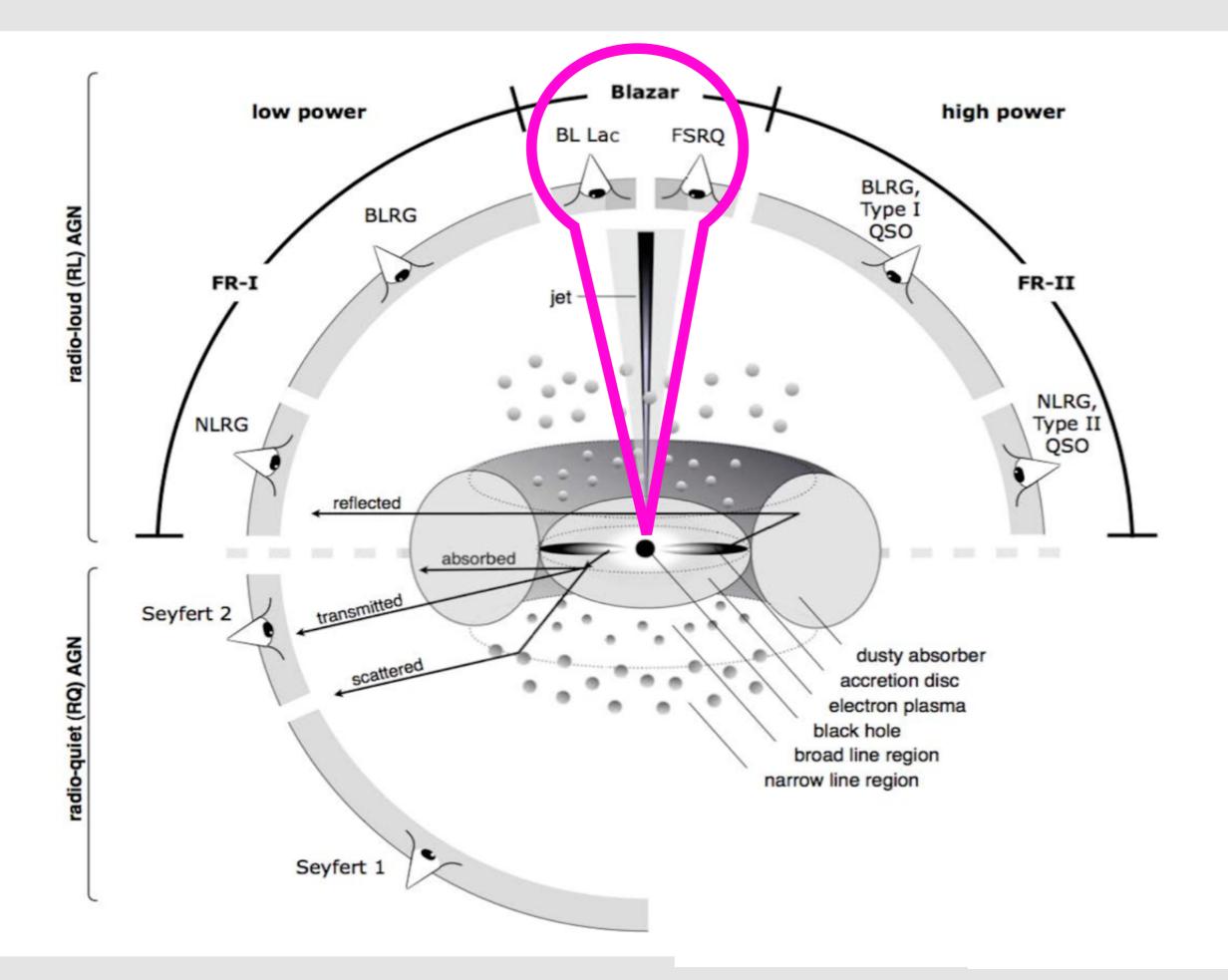
Outline

1. Introduction;

2. Core-Dominance Parameter and Data Analysis;

3. Correlation between Spectral Index and Core-Dominance Parameter;

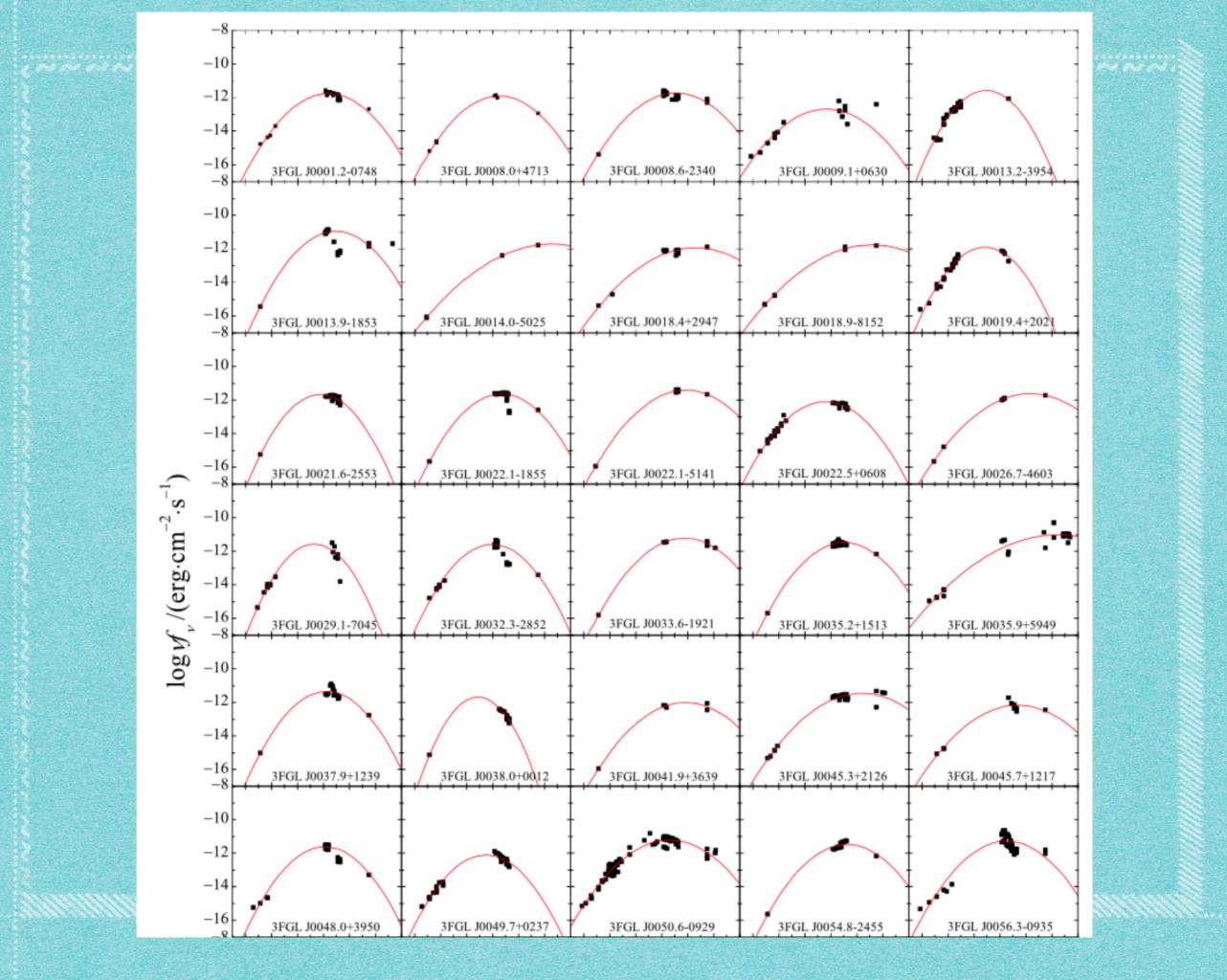
4. Summary

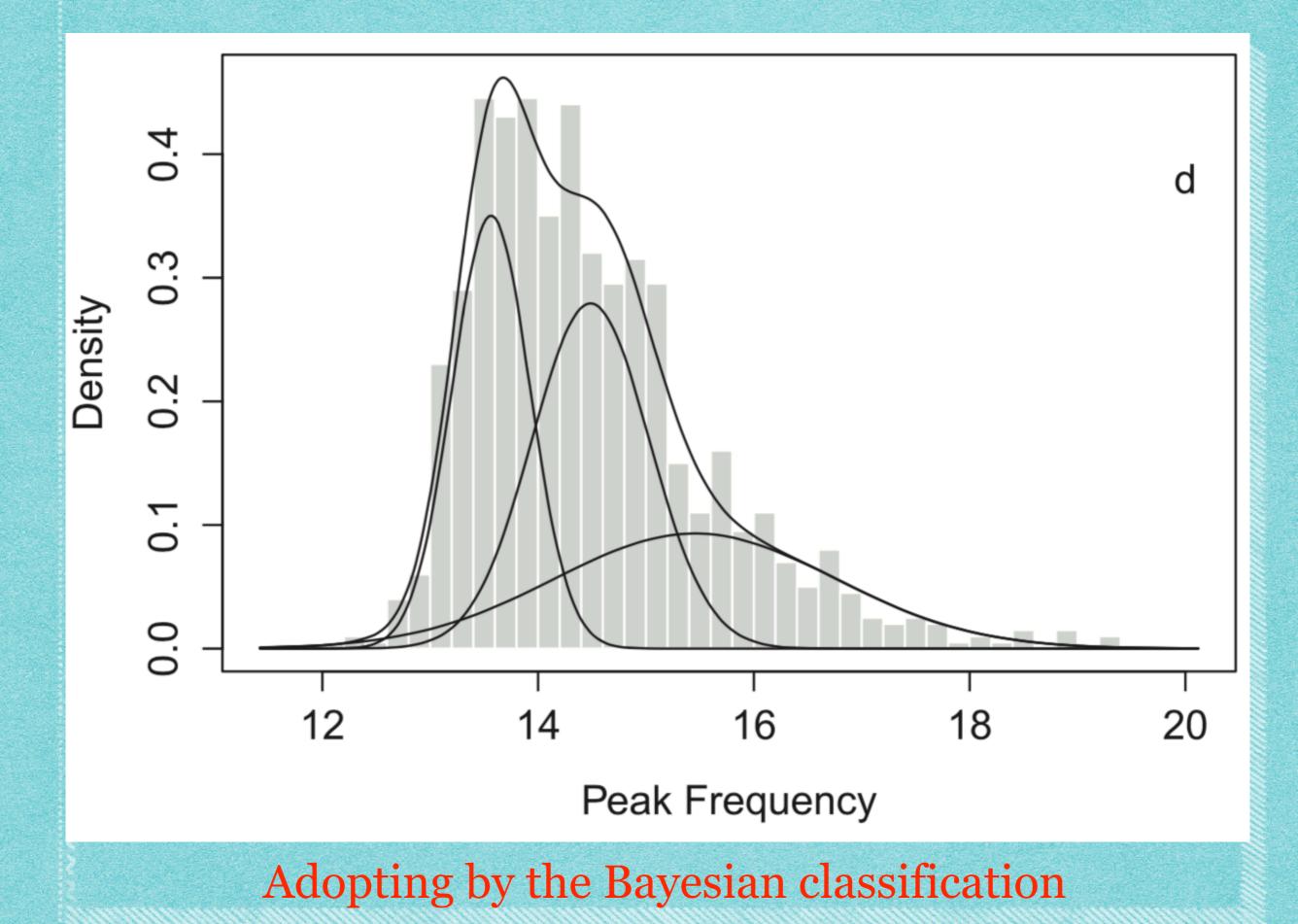

Outline

1. Introduction;

2. Core-Dominance Parameter and Data Analysis;

3. Correlation between Spectral Index and Core-Dominance Parameter;


4. Summary


Fan, Xiao, Pei et al. 2016, ApJS, 226, 20

Calculating SEDs for 1425 Fermi blazars from 3FGL and using multi-wavelengh flux density by fitting

 $\log v F_{v} = P_{1} (\log v - P_{2})^{2} + P_{3}$

Sample for Blazars												
3FGL Name	z	С	$L_{ m R}/\sigma_{L_{ m R}}$	$L_{ m O}/\sigma_{L_{ m O}}$	$L_{ m X}/\sigma_{L_{ m X}}$	$L_\gamma/\sigma_{L_\gamma}$	$lpha_{ m RO}/\sigma_{\!lpha}$	$lpha_{ m OX}/\sigma_{\!lpha}$	P_1/σ_{P_1}	$ u_{ m p}/\sigma_{\! u_{ m p}}$	$L_{ m p}/\sigma_{L_{ m p}}$	$L_{ m bol}/\sigma_{L_{ m bol}}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
J0001.2-0748		IB	42.36/0.01	45.39/0.02		45.23/0.06	0.45/0.01		-0.12/0.01	14.37/0.12	45.35/0.03	45.71/0.05
J0001.4+2120	1.106	HF	42.97/0.01			45.70/0.11			-0.05/0.00	16.79/0.28	45.70/0.03	46.32/0.04
J0003.2-5246		HU			45.13/0.07	44.56/0.11			-0.05/0.01	17.89/0.81	45.15/0.14	45.76/0.14
J0003.8-1151	1.310	LU	43.44/0.01	45.54/0.04		45.59/0.12	0.62/0.01		-0.12/0.01	13.06/0.14	45.57/0.11	46.01/0.15
J0004.7-4740	0.880	IF		46.38/0.04	44.98/0.07	45.86/0.05		1.52/0.04	-0.12/0.01	14.14/0.09	46.20/0.06	46.59/0.09
J0006.4+3825	0.229	IF	41.98/0.01	44.53/0.04	43.44/0.07	44.41/0.06	0.54/0.01	1.40/0.04	-0.11/0.01	14.03/0.12	44.65/0.10	45.08/0.14
J0008.0+4713	0.280	IB	41.18/0.01		43.51/0.07	44.87/0.03			-0.12/0.00	14.52/0.07	44.46/0.04	44.83/0.06
J0008.6-2340	0.147	IB	40.38/0.01		43.72/0.05	43.08/0.12			-0.10/0.01	15.09/0.19	44.01/0.05	44.40/0.07
J0009.1+0630		LB	42.43/0.02	44.97/0.04		45.14/0.07	0.54/0.01		-0.09/0.03	13.69/0.51	44.42/0.17	44.93/0.24
J0009.6-3211	0.026	LU	39.87/0.01	44.48/0.04	41.53/0.13	41.91/0.10	0.17/0.01	2.09/0.06	-0.16/0.02	13.93/0.24	43.90/0.17	44.14/0.23
J0013.2-3954		LB	42.74/0.02	45.04/0.04		45.21/0.06	0.58/0.01		-0.19/0.01	12.95/0.14	45.53/0.09	45.79/0.13
J0013.9-1853	0.095	IB	39.90/0.02		43.72/0.03	42.88/0.11			-0.13/0.01	14.96/0.15	44.37/0.07	44.65/0.09
J0014.0-5025		HB			45.38/0.07	44.64/0.10			-0.05/0.00	18.55/0.33	45.38/0.06	45.94/0.07
J0015.7+5552		HU	41.90/0.01			44.93/0.09			-0.10/0.00	15.82/0.10	45.95/0.03	46.32/0.04
J0016.3-0013	1.577	IF	43.96/0.01	45.49/0.04	45.02/0.07	46.67/0.06	0.72/0.01	1.17/0.04	-0.09/0.01	13.58/0.10	45.58/0.04	46.12/0.06
J0017.2-0643		IU	41.94/0.01	44.82/0.04		44.87/0.09	0.48/0.01		-0.10/0.01	14.64/0.37	44.79/0.06	45.21/0.09
J0017.6-0512	0.227	IF	41.46/0.02	44.30/0.04	43.78/0.11	44.48/0.05	0.49/0.01	1.19/0.05	-0.11/0.01	14.48/0.13	44.63/0.15	45.02/0.21
J0018.4+2947	0.100	HB	40.00/0.01		43.54/0.07	42.84/0.13	·		-0.06/0.01	16.60/0.68	43.44/0.12	43.96/0.16
J0018.9-8152		HB			45.37/0.09	45.16/0.06			-0.05/0.01	17.16/0.46	45.33/0.07	45.90/0.07
J0019.1-5645		LU				44.88/0.09			-0.13/0.01	13.35/0.10	44.04/0.06	44.41/0.10
J0019.4+2021		LB	43.04/0.01	44.42/0.04		44.91/0.10	0.75/0.01		-0.17/0.01	12.84/0.09	45.19/0.06	45.50/0.10
J0021.6-2553		LB	41.88/0.01	45.06/0.14		45.14/0.06	0.43/0.03		-0.17/0.02	13.77/0.17	45.43/0.08	45.67/0.12
J0021.6-6835		IU			44.82/0.08	44.87/0.12			-0.09/0.01	14.90/0.13	45.47/0.04	45.92/0.05
J0022.1-1855		IB	41.39/0.02	45.60/0.02	44.56/0.11	45.13/0.05	0.24/0.01	1.38/0.05	-0.13/0.01	14.69/0.12	45.46/0.03	45.76/0.05
J0022.1-5141		HB			45.51/0.07	45.14/0.05			-0.09/0.00	15.86/0.16	45.69/0.03	46.07/0.05
J0022.5+0608		LB	42.57/0.01	44.64/0.04		45.68/0.03	0.63/0.01		-0.12/0.01	13.58/0.12	45.00/0.06	45.40/0.09
			Monochromatic Luminosity			spe	ctive ctral dex		ing Res 1,P2,F			

Fan, Xiao, Pei et al. 2016, ApJS, 226, 20

LSPs: $\log v_{p} \le 14.0$ *ISPs*: $14.0 < \log v_{p} \le 15.3$ *HSPs*: $\log v_{p} > 15.3$

The results are similar to those by Abdo et al. 2010

1.2 Relativistic Beaming Effect

Beaming factor: $\delta = \frac{1}{\gamma(1 - \beta \cos \theta)}$

Lorentz factor: $\gamma = \frac{1}{2}$

$$\gamma = \frac{1}{1-\beta^2}, \ \beta = \frac{v}{c}$$

1.2 Relativistic Beaming Effect

Beaming factor: $\delta = \frac{1}{\gamma(1 - \beta \cos \theta)}$

Lorentz factor:

$$\gamma = \frac{1}{1 - \beta^2}, \ \beta =$$

BLRG jet intted

1.3 Fermi / LAT

Launching in June 11, 2008! 十年啦! Ten years! Dieci anni!

Celebrating 10 Years of Fermi June 11, 2018

Home	Support Center	Observations	Data	Proposals	Library	HEASARC	Help
Data		Preliminary I	LAT 8-y	ear Point	Source L	ist (FL8Y)	
+ LAT G	ata atalog ata Queries uery Results /eekly Files Data	This page provides a prelimit NASA Fermi Guest Investiga Telescope mission and the 10 source list has twice as much diffuse gamma-ray emission. and spectral properties. Fifty-e identified based on angular ex we have not found plausible of galaxies of the blazar class, catalog which will benefit from	ator proposals. B 00 MeV-1 TeV ran exposure as well The FL8Y source eight sources are xtent or correlated counterparts at o 218 are pulsars.	ased on the first eight age, it is the deepest yet as a number of analysis be list includes 5523 source modeled explicitly as sp d variability (periodic or ther wavelengths. More This source list is mea	years of science da in this energy range. s improvements, but i ces above 4-sigma si patially extended, and otherwise) observed a than 2900 of the ide	Ata from the Fermi Gami Relative to the 3FGL cata s lacking an updated mod gnificance, with source lo d overall 300 sources are at other wavelengths. For ntified or associated sour	ma-ray Space alog, the FL8Y del for Galactic cation regions considered as 2131 sources rces are active
 Caveats Newslet 		Caveats					
FAQ		The FL8Y list is meant to prov				• •	

The FL8Y list is meant to provide researchers analyzing Fermi data with an updated description of the gamma-ray sky with respect to 3FGL. It contains nearly 2500 new sources which can be used as a starting point for new works. It can also be used for modelling the source background in a region of interest.

Being a courtesy effort, FL8Y is neither published nor posted on the arXiv. We request the community users to refrain from publishing works (in particular population studies) using directly material from FL8Y, and wait for the future 4FGL catalog that will supersede FL8Y.

FL8Y Source List Data Products

The 8-year Source List is currently available as a FITS file. Supporting tools and documentation have been provided and are linked below.

Celebrating 10 Years of Fermi June 11, 2018

Home	Support Center	Observations	Data	Proposals	Library	HEASARC	Help
Data		Preliminary	LAT 8-y	ear Point	Source L	ist (FL8Y)	
+ LAT Q	cess ata atalog ata Queries uery Results feekly Files Data	This page provides a prelimit NASA Fermi Guest Investiga Telescope mission and the 10 source list has twice as much diffuse gamma-ray emission. and spectral properties. Fifty- identified based on angular en- we have not found plausible galaxies of the blazar class, catalog which will benefit from	ator proposals. B 00 MeV-1 TeV ran exposure as well The FL8Y source eight sources are xtent or correlated counterparts at o 218 are pulsars.	ased on the first eight ge, it is the deepest yet as a number of analysis list includes 5523 source modeled explicitly as sp d variability (periodiced ther wavelengths. More This source list is mea	years of science da in this energy range. s in provements, but i ces above 4-sigma si patially extended, and therwise) observed a than 2900 of the idea	ta from the Fermi Gami Relative to the 3FGL cata s lacking an updated mod gnificance, with source lo l overall 300 sources are at other wavelengths. For ntified or associated sour	ma-ray Space alog, the FL8Y del for Galactic cation regions considered as 2131 sources ces are active
 Caveats Newslett 	ers	Caveats			5523	source)S
 FAQ 		The FL8Y list is meant to pro	vide researchers	analyzing Fermi data wit	th an updated descrip	otion of the gamma-ray sk	y with respect

The FL8Y list is meant to provide researchers analyzing Fermi data with an updated description of the gamma-ray sky with respect to 3FGL. It contains nearly 2500 new sources which can be used as a starting point for new works. It can also be used for modelling the source background in a region of interest.

Being a courtesy effort, FL8Y is neither published nor posted on the arXiv. We request the community users to refrain from publishing works (in particular population studies) using directly material from FL8Y, and wait for the future 4FGL catalog that will supersede FL8Y.

FL8Y Source List Data Products

The 8-year Source List is currently available as a FITS file. Supporting tools and documentation have been provided and are linked below.

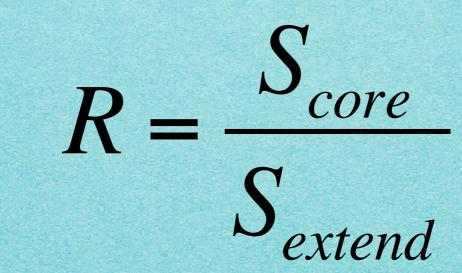
LAT FL8Y Blazars

BL Lacs	1008	FSRQs 22%	
FSRQs	618	BL Lacs 35%	
BCUs	1229	BCUs 43%	

Outline

1. Introduction;

2. Core-Dominance Parameter and Data Analysis;


3. Correlation between Spectral Index and Core-Dominance Parameter;

4. Summary

dd add i canal acad a canal a c

The radio emissions are consisted of two components, namely the core and the extended emissions.

The emissions are consisted of two components, namely the core and the extended emissions.

R: Core-Dominance Parameter

$$S_{core}^{5GHz} = S_{core}^{\nu,obs}, \quad S_{ext.}^{5GHz} = S_{ext.}^{\nu,obs} \left(\frac{\nu}{5GHz}\right)^{\alpha_{ext}}$$
$$\log R = \log\left(\frac{S_{core}}{S_{ext.}}\right) (1+z)^{\alpha_{core}-\alpha_{ext.}}$$

we take:

$$\alpha_{core} = 0.00, \alpha_{ext.} = 0.75$$

(Fan et al. 2011; Pei et al. 2018 & 2019, in prep.)

 $R = f\delta^{3+\alpha} (or \ f\delta^{2+\alpha})$

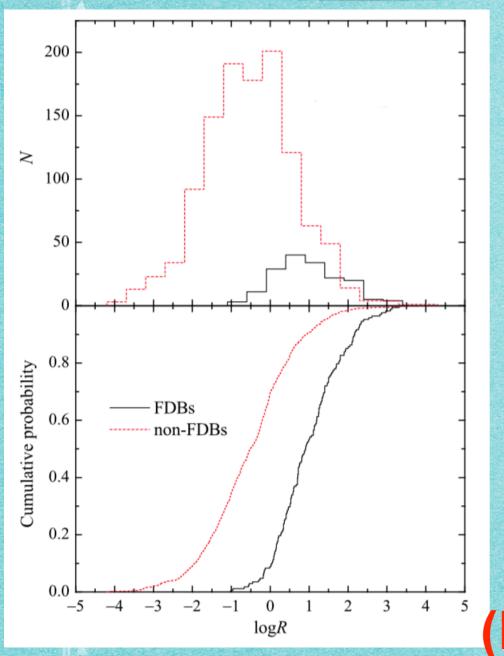
(Ghisellini et al. 1993)

$R = f\{[\gamma(1 - \beta\cos\theta)]^{-3} + [\gamma(1 + \beta\cos\theta)]^{-3}\}$

(Urry and Padovani 1995)

2.2 Previous work (i)

We collected relevant observations for a sample of 1223 AGNs including 77 BLLs, 495 FSRQs and other objects, and calculated the core-dominance parameters and spectral indices.


(Fan et al. 2011, RAA, 11, 1437)

2.2 Previous work (ii)

Basing on 3FGL, we compiled 1335 objects with available core-dominance parameters, log R, which consisted of 169 Fermi-Detected Blazars (FBs) and 1166 non-Fermi-Detected Blazars (non-FBs).

(Pei et al. 2016, ApSS, 361, 237)

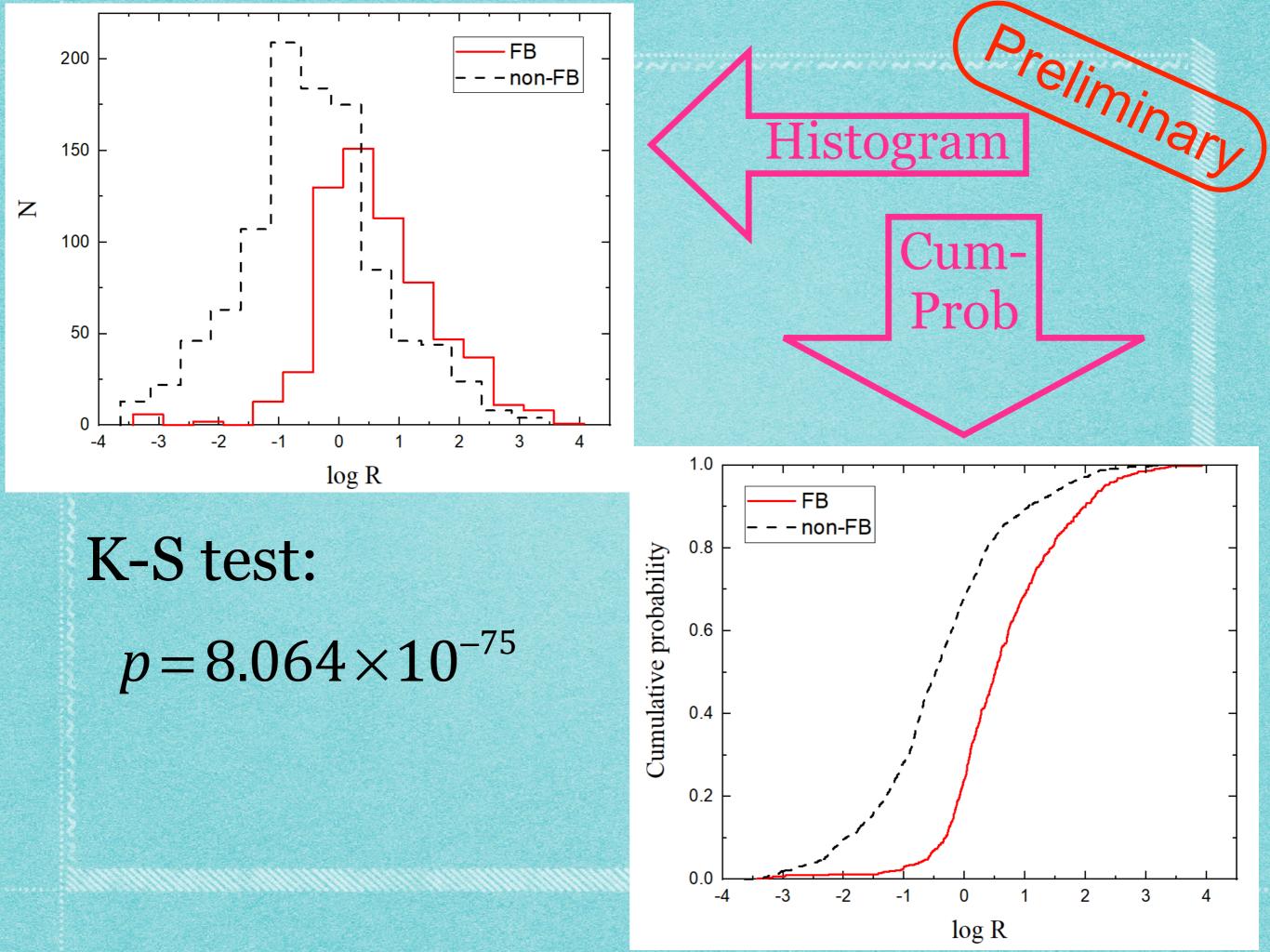
2.2 Previous work (ii)

FBs : $< \log R > \simeq 0.99$ non-FBs : $< \log R > \simeq -0.62$

(Pei et al. 2016, ApSS, 361, 237)

2.2 Previous work (iii)

We collected a new sample of 2400 AGNs, which not included in Fan et al. (2011), including 250 BLLs, 520 FSRQs and other objects with available coredominance parameters log R, and make further discussion.


(Pei et al. 2018, RAA, Accepted)

2.3 Recently

Basing on FL8Y, we compiled 626 Fermi blazars and 1031 non-Fermi blazars with available core-dominance parameter (log R). FBs consisted of 270 BL Lacs, 302 FSRQs and 54 **BCUs**. We use these data to study the beaming effect and radio dominance of Fermi blazars. (Pei et al. 2019, in prep.)

2.3.1 Comparison of logR between FBs and non-FBs

FBs : $< \log R > \simeq 0.63$ non-FBs : $< \log R > \simeq -0.44$

2.3.2 Comparison of logR in FBs

BL Lacs : $< \log R > \simeq 0.67$ FSRQs : $< \log R > \simeq 0.70$ BCUs : $< \log R > \simeq 0.03$ The averaged of logR for FBs is higher than those for non-FBs.

2.3.3 Comparison of Gamma-Ray Photon Index in FBs

 $<\alpha_{\gamma}>|_{BL \ Lacs}\simeq 2.04$

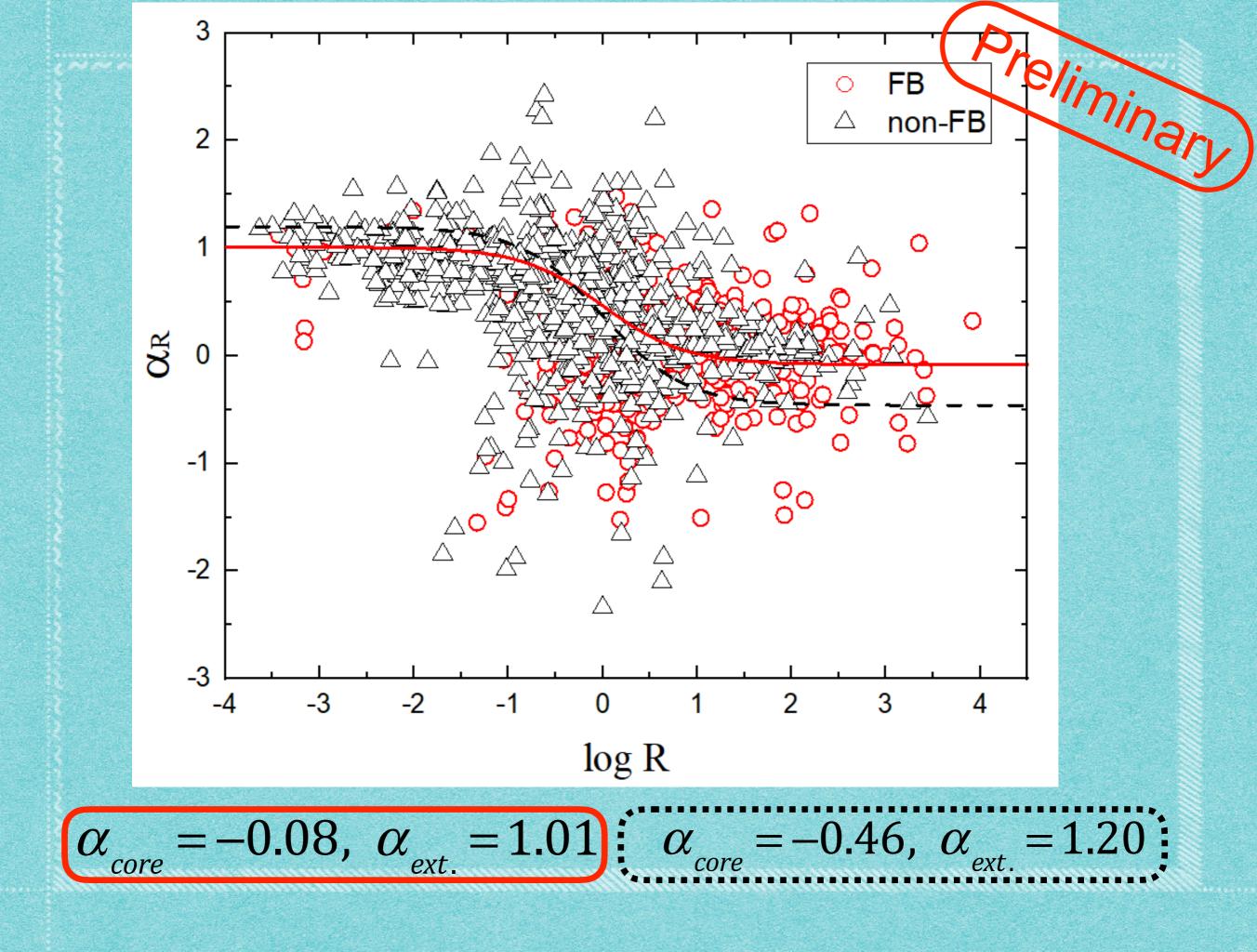
 $<\alpha_{\gamma}>|_{FSRQs}\simeq 2.50$

 $<\alpha_{\gamma}>|_{BCUs}\simeq 2.30$

Outline

1. Introduction;

2. Core-Dominance Parameter and Data Analysis;

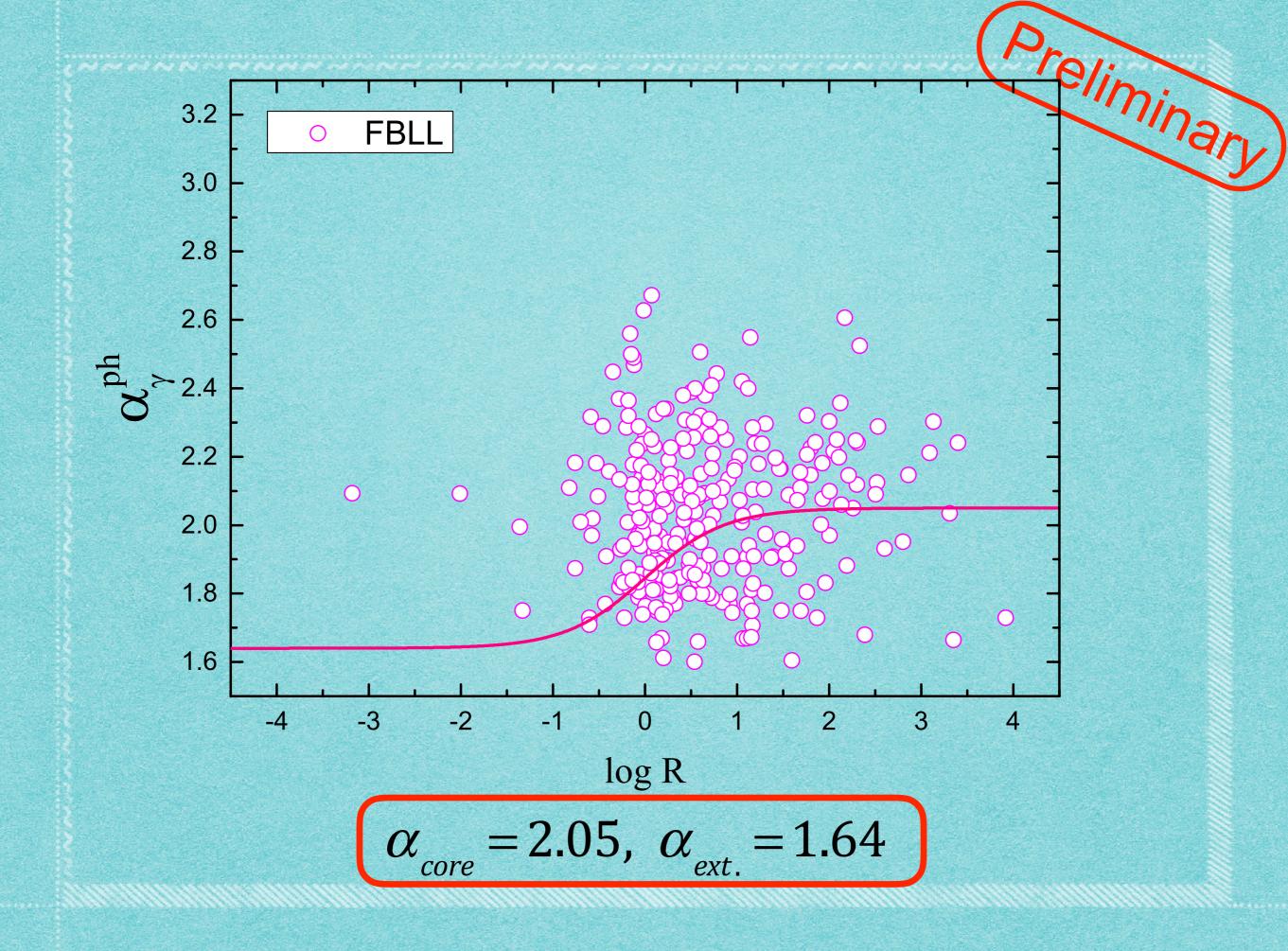

3. Correlation between Spectral Index and Core-Dominance Parameter;

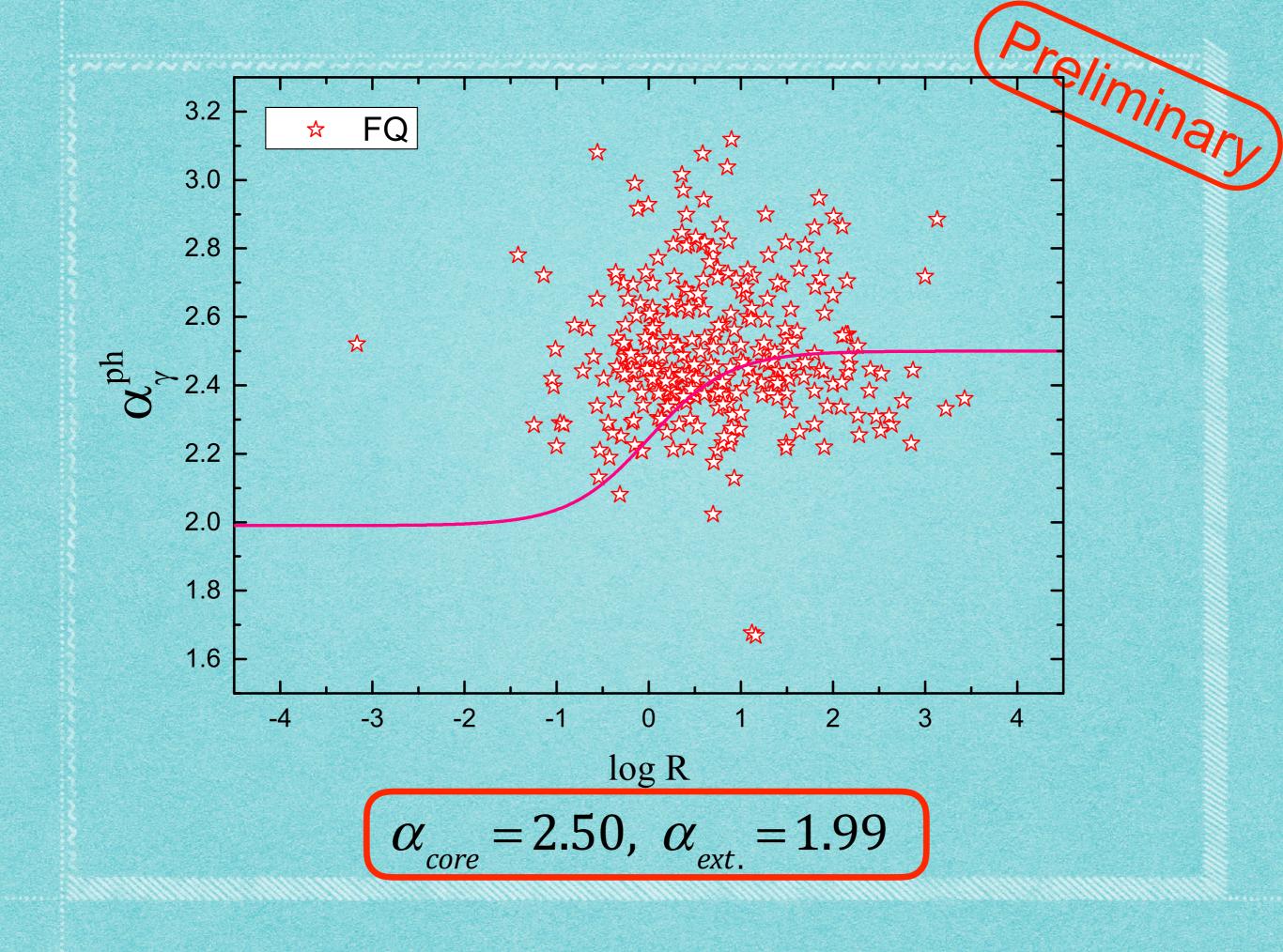
4. Summary

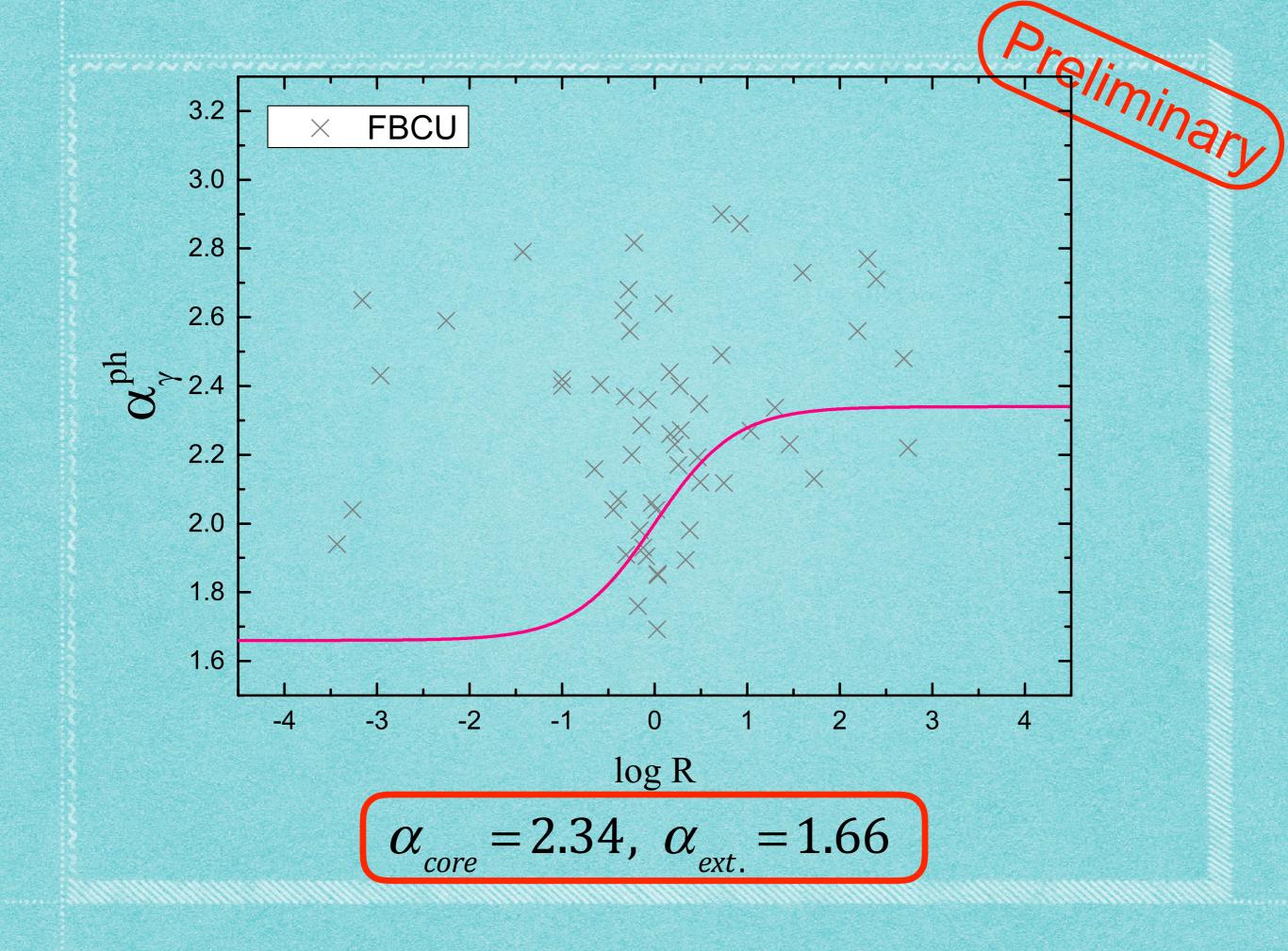
3.1 Correlation between Radio Spectral Index and logR


R $\alpha_t = \frac{1}{1+R} \alpha_{core} + \frac{1}{1+R} \alpha_{Ext}$

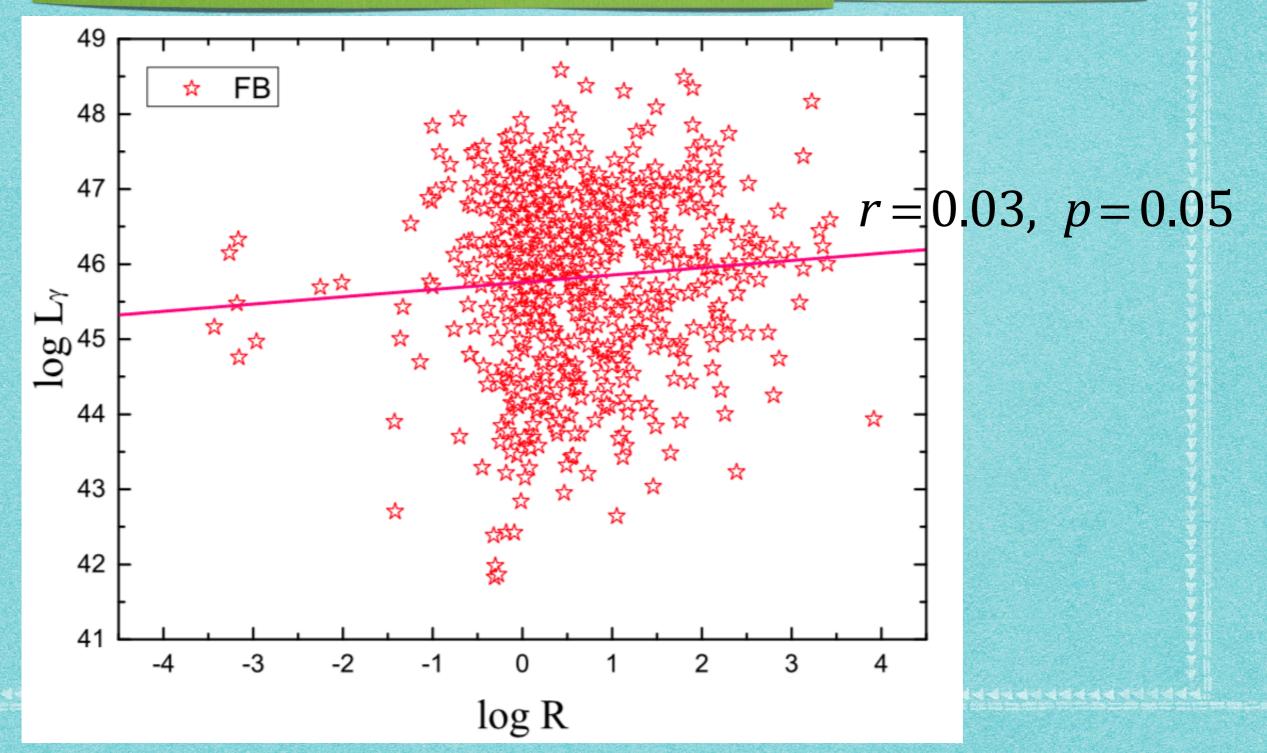
(Fan et al. 2010)

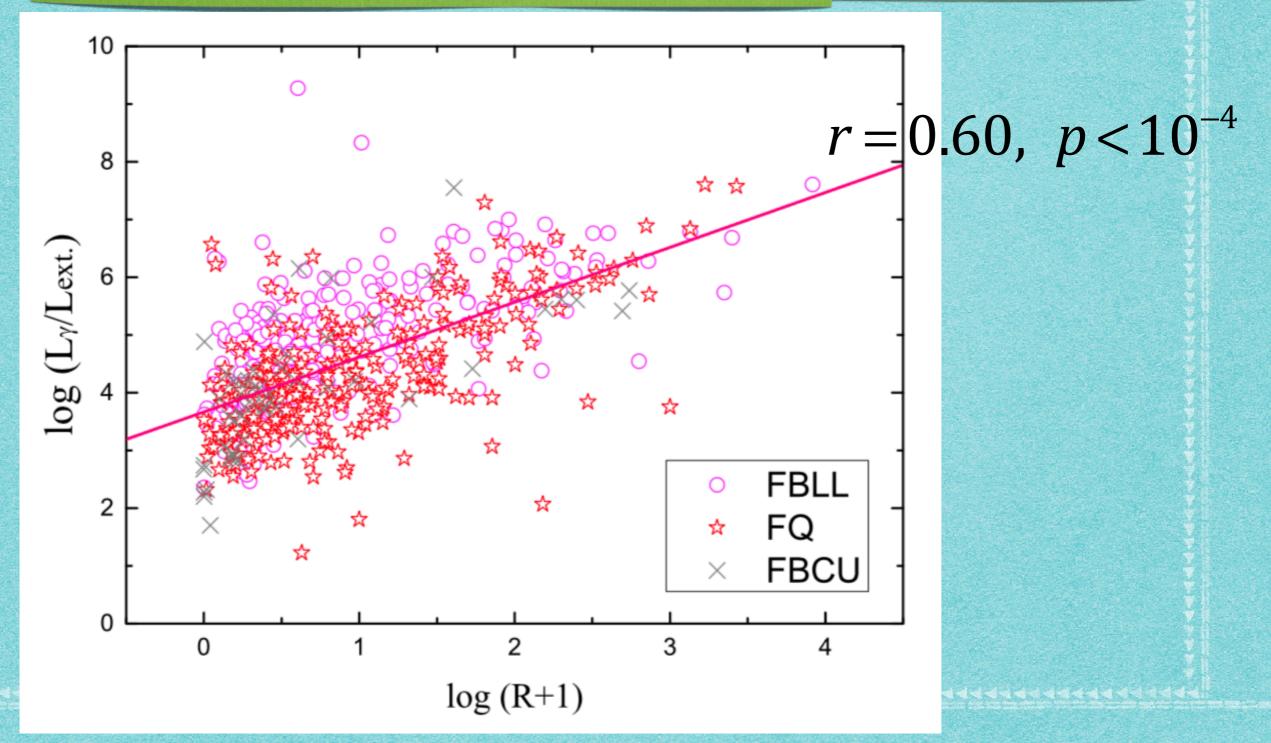



What about γ-ray emission?


3.2 Correlation between Gamma-Ray Photon Index and logR

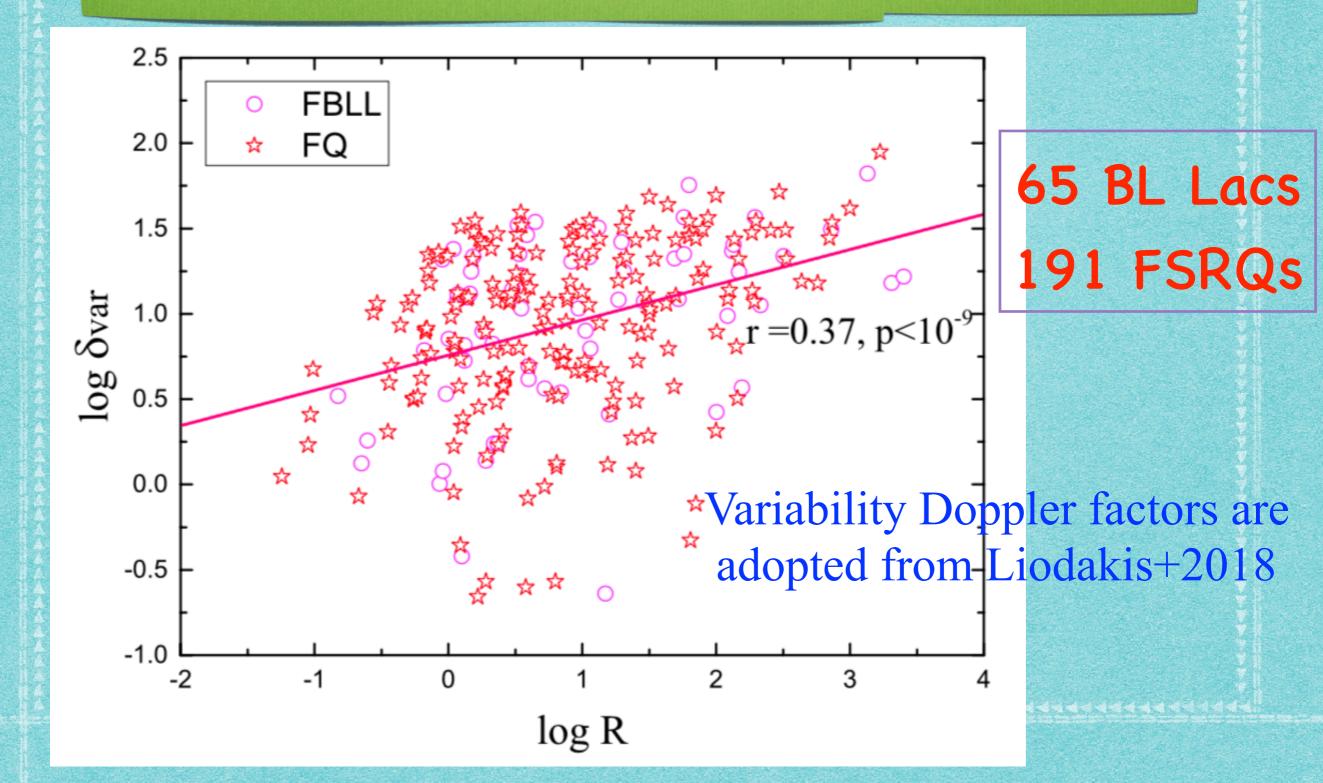
(Pei et al. 2016, & 2019, in prep.)




3.2 Correlation between Gamma-Ray Photon Index and logR

Sample	Statistics Result	Fitting Result for α_{core}^{γ}
BL Lacs	2.04	2.05
FSRQs	2.50	2.50
BCUs	2.30	2.34

3.3 Correlation between Gamma-Ray Luminosity and logR


3.3 Correlation between Gamma-Ray Luminosity and logR

γ-ray emissions are mainly from *the core component*.

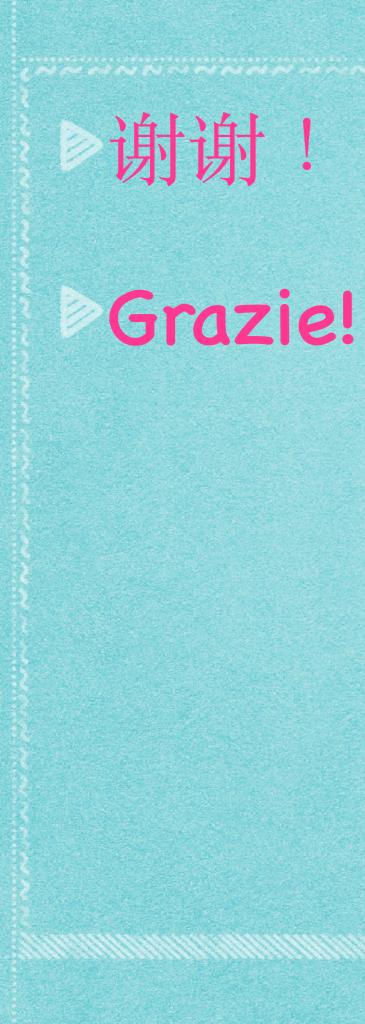
(Pei et al. 2016, ApSS, 237, 13; & 2019, in prep.)

3.4 Correlation between Doppler Factor and logR

Outline

1. Introduction;

2. Core-Dominance Parameter and Data Analysis;


3. Correlation between Spectral Index and Core-Dominance Parameter;

4. Summary

1. This is the preliminary results due to adopting the data from FL8Y, we will compile those data again with respect to 4FGL catalogue after releasing! 2. Core dominance parameter (logR) in Fermi blazars (FBs) is quite different from that in non-Fermi blazars (non-FBs). The mean value for FBs is **higher** than non-FBs. So the γ -ray blazars are more radio core-dominated.

3. γ-ray emissions are perhaps composed of two components, and the emissions are mainly from the **core (jet)** component.

4. Core dominance parameter implies that the Fermi blazars are **beamed!**

