(Extreme) HBLs (+ Misaligned Versions) as UHECR Sources

Andrew Taylor

Particle Acceleration in AGN

AM Hillas (1984)

Compactness of UHECR Sources: Proton/Nuclei Synchrotron Losses

 $\eta pprox \mathbf{1}$ assumed in above plot

AM Hillas (1984)

Particle Acceleration with Cooling

Maximum synchrotron energy tells us how efficient accelerator is!

$$\eta < \mathbf{10^3}$$

Future Probes- Cutoff Region

Emission Site? Co

Where are the misaligned (X)HBLs?

Hardcastle et al. (1103.1744)

Future Probes-Temporal Structure

Possibility that emission comes from much higher energy emission (potentially from proton losses.....)

Prosekin et al. (1203.3787)

Transition Energy Probes Anisotropy constraint: Giaci Giacinti et al. (2011), 1112.5599 Pierre Auger Collab. (2012), 1212.3083 10⁶ Upper Limit - Dipole Amplitude B=3µG 10⁴ Scattering Length [pc] 10² 10⁰ 10^{-1} 10⁻² 10⁻⁴ 10⁻⁶ Kolmogorov scattering Kraichnen scattering Z=1 Z=26 10⁻² Larmor 10⁻⁸ 10¹⁰ 10¹² 10^{14} 10¹⁶ 10¹⁸ 10^{20} 10 E [eV] E [EeV] Magnetic horizon effect dl/dE x E^{2.7} (m⁻² sr¹ s⁻¹ eV^{1.7}) all-particle -- PRL 107 all-particle 10^{7} Where does the energy flux go? heavy (sep. between He-CNO) (or do these CR propagate $E^{2} dN/dE \left[eV cm^{-2} s^{-1} sr^{-1} \right]$ unimpeded?)....energy is Proton knee 10¹⁹ conserved after all Iron knee light (sep. between CNO-Si) -- PRL 107 Ankle light (sep. between CNO-Si) light (sep. between He-CNO) 10¹⁸ 10^{1} light (sep. on He)

SNR p

10¹⁵

10¹⁶

10¹⁷

E [eV]

 10^{0}

10¹⁴

^{امور} (E/eV) Kascade-Grande Coll. (2013), 1304.7114

17.6

17.8

18

18.2 18.4

17.2 17.4

16.6

16.4

16.8

17

DESY.₉

xtraga

10²⁰

10¹⁹

10¹⁸

Why Consider UHECR to Understand the Galactic/Extragalactic Transition?

- Since the ankle feature appears at an energy of ~10^{18.6} eV, a new extragalactic source class is presumed to begin to dominate here (in the first instance)
- Information obtained about this source class from investigations into the UHECR sources may provide new insights into Galactic-Extragalactic transition energy

DESY. 10

Assumptions on Source Population

$$\label{eq:dN} \frac{dN}{dV_{C}} \propto (1+z)^{\mathbf{n}}$$

 $\mathbf{z} < \mathbf{z}_{\max}$

 $n=-6,\,-3,\,0,\,3$

$$rac{\mathbf{dN}}{\mathbf{dE}} \propto \mathbf{E}^{-lpha} \exp[-\mathbf{E}/\mathbf{E}_{\mathbf{Z},\mathbf{max}}]$$

$$\mathbf{E}_{\mathbf{Z},\mathbf{max}} = (\mathbf{Z}/\mathbf{26}) imes \mathbf{E}_{\mathbf{Fe},\mathbf{max}}$$

Note- magnetic field horizon effects are neglected in the following. This amounts to assuming: $d_s < (ct_H \lambda_{scat})^{1/2}$ ie. the source distribution may be approximated to be spatially continuous (also note, presence of t_H term comes from temporally continuous assumption)

How Far is the Nearest Source?

Taylor et al. (2011), 1107.2055 Fargion et al. (2015), 1412.1573

MCMC Likelihood Scan: Spectral + Composition Fits

 $L(f_{p}, f_{He}, f_{N}, f_{Si}, E_{max}, \alpha) \propto \exp(-\chi^{2}/2)$ n=3 evolution result 1000 E_{Fe. max}=10^{20.2} eV E² dN/dE [eV cm⁻² s⁻¹ sr⁻¹] 100 **α=0.6** 10 1 0.1 =20-39 A=40-56 0.01 18.5 19 20 17.5 18 19.5 20.5 log₁₀ Energy [eV]

> Taylor et al. (2015), 1505.06090 Aloisio et al. (2014), 1312.7459 Di Matteo et al. (2015), ICRC 2015 Zirakashvili et al. (2017), 1701.00820

MCMC Likelihood Scan: Soft Spectra Solutions

MCMC Results Table

Taylor et al. (2015), 1505.06090

	n = -6		n = -3		n = 0		n = 3	
Parameter	Best-fit Value	Posterior Mean & Standard Deviation						
f_{P}	0.03	0.14 ± 0.12	0.08	0.15 ± 0.13	0.17	0.17 ± 0.16	0.19	0.20 ± 0.16
$f_{ m He}$	0.50	0.21 ± 0.17	0.42	0.17 ± 0.16	0.53	0.20 ± 0.17	0.32	0.23 ± 0.20
$f_{ m N}$	0.40	0.50 ± 0.18	0.42	0.51 ± 0.19	0.29	0.47 ± 0.19	0.43	0.45 ± 0.21
$f_{ m Si}$	0.06	0.11 ± 0.12	0.08	0.12 ± 0.13	0.0	0.11 ± 0.12	0.06	0.078 ± 0.086
$f_{ m Fe}$	0.01	0.052 ± 0.039	0.0	0.053 ± 0.042	0.01	0.050 ± 0.038	0.0	0.044 ± 0.034
α	1.8	1.83 ± 0.31	1.6	1.67 ± 0.36	1.1	1.33 ± 0.41	0.6	0.64 ± 0.44
$\log_{10} \left(\frac{E_{\rm Fe,max}}{\rm eV} \right)$	20.5	20.55 ± 0.26	20.5	20.52 ± 0.27	20.2	20.38 ± 0.25	20.2	20.16 ± 0.18

Flatter spectra preferred for negative source evolution Hard spectra preferred for source evolution following that of the SFR

DESY. 18

High Spectral Peaked Blazar Evolution

101

10¹⁰

10¹⁰

10¹²

10¹⁴

10¹⁶

10¹⁸

10²⁰

10²²

10²⁴

10²⁶

Secondary (Guaranteed) Gamma-Ray Fluxes From >10^{18.6}eV UHECR Component

Does a Separate Class of Extragalactic Source Dominate Below the Ankle?

Cascade Contribution from the Postulated Sub-Ankle Populated

General Problem for Cascade Contribution?

Cascade Contributions from Sources Above + Below the Ankle

Conclusions

- (Extreme) HBL blazars promote themselves as efficient particle accelerators via their high energy synchrotron emission
- Local sources, < 80 Mpc, must exist! Where are the misaligned (extreme) HBL counterparts?
- Lower energy UHECR and GeV gamma-rays provide a complimentary probe of the cosmological source distribution
- A negative source evolution allows for an E⁻² type spectra to explain CR above the ankle (such an evolution is observed for the HBL blazars)
- New diffuse gamma-ray background limits are challenging for both positive and no-evolution scenarios which account for sub Ankle extragalactic protons
- An "understanding" of UHECR sources is possible through an understanding of AGN gamma-ray emission at very high energies!

Hard X-Ray Source Evolution

In a similar manner to BL Lac blazars, the low luminosity hard X-ray sources (Seyferts) have also been suggested to indicate a negative evolution with redshift

Ueda et al. (2003), 0308140

DESY. 27

Secondary Neutrino Fluxes

Taylor et al. (2015), 1505.06090 Globus et al. (2017), 1703.04158

.....and Radio Galaxy Contributions **Still Not Removed**

Di Mauro et al. (2013), 1304.0908 Inoue et al. (2011), 1103.3946

cascades

Proton Fed Blazar Emission Model

- Kusenko & Essey have spearheaded the suggestion that some TeV blazars are powered through proton losses in the presence of weak (10⁻¹⁵ G) extragalactic magnetic fields
- If this is the case, some subset of the component of resolved/ unresolved blazars should not be removed from the EGB
- However these blazars would not be expected to show short time-scale variability structure

Source Redshifts Contributing to Arriving Flux

General Problem for Cascade Contribution?

Fermi Collaboration (2015)- astro-ph/1511.00693

"Our analysis permits us to estimate that point sources, and in particular blazars, explain almost the totality (86^{+16}_{-14} %) of the >50 GeV EGB."

10⁻⁸

10⁻⁹

The Origin of Protons Below the Ankle

Sources at 120 Mpc

If only 1% of EGB comes from subankle UHECR (present limit is 14%), we will be forced to look extremely locally for their sources

The Origin of Protons Below the Ankle

DESY.

An Alternative Interpretation of the Negative Source Evolution Result

At high energies, the negative evolution scenarios help resolve both:

- "hard spectrum"
- "IGRB over-production"

problems.

Alternatively, these scenarios may simply be encapsulating the fact that we've a local dominant source and our local value for UHECR is well above the "sea level"!

Hard Spectra Problem

Magnetic horizon suppression suggested to resolve "hardness" issue, **Mollerach et al. (2013), 1305.6519**

	E/E _c		-	
	Miniati	Dolag <i>et al.</i>	Das <i>et al</i> .	Donnert <i>et al.</i>
$\langle B \rangle$ [G]	1.8×10^{-8}	5.5×10^{-11}	1.2×10^{-9}	6.3×10^{-11}
B_{rms} [G]	1.7×10^{-7}	$1.5 imes 10^{-8}$	5.7×10^{-8}	1.7×10^{-8}

$$egin{aligned} X_s &= rac{d_s}{(ct_H l_c)^{1/2}} \ &= 0.1 ~ \left(rac{d_s}{10 ~ ext{Mpc}}
ight) \left(rac{1 ~ ext{Mpc}}{l_c}
ight)^{1/2} \end{aligned}$$

"Realistic" field structures/strengths, however, don't provide sufficient suppression,

Alves Batista et al. (2014), 1407.6150

Composition- Consider Nuclei?

DESY. 37

The Importance of the Galactic Diffuse Emission

Berezinsky et al. (2016), 1606.09293 Globus et al. (2017), 1703.04158