

Fundamental physics with extreme BL Lacs (a critical appraisal)

Fabrizio Tavecchio

(INAF-OABrera)

TeV extreme BL Lacs provide an intense beam of γ-rays with appreciable flux, <u>extending at least up to ~10 TeV</u>.

Ideal sources to probe cosmic opacity (EBL)

A. Franceschini talk

Ideal sources to probe intergalactic magnetic fields

E. Pueschel talk

TeV extreme BL Lacs provide an intense beam of γ-rays with appreciable flux, <u>extending at least up to ~10 TeV</u>.

Ideal sources to probe *anomalies* (i.e. reduction) of the cosmic opacity caused by e.g.:

the existence of Axion-like particles (ALP) the breaking of the Lorentz invariance (LIV)

This talk G. Galanti talk

Milky Way absorption: $\gamma + \gamma_{\text{Soft}} \rightarrow e^+ + e^-$ V_{Soft}: EBL **Extragalactic space** Psoft % EBL and IGMF <u>e</u>* e

Credits: G. Galantí

The 'Holy Grail' of physics

General relativity

Quantum mechanics

$$E_{\rm Pl} = \sqrt{\frac{\hbar c^5}{G}} \simeq 1.2 \times 10^{19} \text{ GeV}$$

 $\ell_{\rm P} = \sqrt{\frac{\hbar G}{c^3}} \approx 1.616 \ 199(97) \times 10^{-35} \text{ m}$

Lorentz invariance violation

The existence of an invariant length in QG naturally leads to the violation of the Lorentz invariance (LIV)

Physical effects depend on particle energy (i.e. boost)

Enormous energy! But effects are expected also at lower energies

(see reviews in Mattingly 2005, Liberati 2013, Amelino-Camelia 2013)

(Some) LIV effects

vacuum birifrangence (depolarization, rotation)

Photon decay, vacuum Cherenkov (max. E for CR)

Energy-dependent photon time of flight

Modification of reaction thresholds (photons, CR)

(Some) LIV effects

vacuum birifrangence (depolarization, rotation)

Photon decay, vacuum Cherenkov (max. E for CR)

Energy-dependent photon time of flight

Modification of reaction thresholds (photons, CR)

Modified dispersion relations

A first, simple phenomenological approach

$$E_{\gamma}^2 = k^2 \pm \frac{E_{\gamma}^n}{E_{LIV}^{n-2}}$$

photons

We consider n>3

Similar expressions for particles (but stringent constraints for electrons, Jacobson et al. 2003)

E-dependent time of flight

Photon speed is energy dependent! Vacuum is dispersive.

$$v_g = \frac{\partial E}{\partial k} \neq c$$

Photons with different E emitted simultaneously will arrive at different times.

$$\Delta t = \frac{1}{2} \frac{E_2 - E_1}{E_{LIV}} d \qquad \text{n=3}$$

Caveat: delays can be intrinsic to the source

Amelino-Camelia et al. 1998 But see Chen et al. 2015

Cosmic clocks: GRBs

GRB 090510

z=0.9

A photon with E=31 GeV after 0.829 s

$E_{LIV} = 7.6 \times E_{\rm Pl} \qquad n=3$

Vasileiou et al. 2013

E-dependent time of flight

Aharonian et al. 2007

Abramowski et al. 2011

Long flare timescale (~300 s)!

E-dependent time of flight

Current status

Limitations:

-intrinsic delays (lower limits only)-not predicted by some LIV schemes

(Some) LIV effects

Vacuum birifrangence (depolarization, rotation)

Photon decay, vacuum Cherenkov (max. E for CR)

Energy-dependent photon time of flight

Modification of reaction thresholds (photons, CR)

Gamma-ray absorption

LIV induces an 'effective mass' for the photon

n=3
- sign
$$\epsilon_{\min} = \frac{m_e^2 c^4}{E_{\gamma}} + \frac{E_{\gamma}^2}{4E_{LIV}}$$

Kifune 1999 Protheroe & Meyer 2000 Jacob & Piran 2008 Fairbairn et al. 2014 Biteau & Williams 2015 Tavecchio & Bonnoli 2016 Abdalla & Boettcher 2018

Abdalla & Boettcher 2018

18 2.40 16 14 12 95% excluded Likelihood 10 8 99% excluded 6 4 2 0 0.2 0.8 1.2 1.4 0.4 0.6 1.6 1.8 0 1 2 E_{Planck}/E_{QG} $E_{LIV} \approx 2 \times 10^{19} \text{ GeV}$

Biteau & Williams 2015

Current limits

Combined, multi-source analysis

Persistent extreme BL Lacs

 $E_{\rm peak} \lesssim 10 {
m ~TeV}$

Similar to hadronic models (e.g. Cerruti et al. 2015)

A new, strong limit

Guedes Lang et al. 2018

Combined, multi-source analysis

ELIV=1e19 GeV 3e19 1e20 2e20

Tavecchio & Bonnoli 2016

Mkn 501: a better source?

Tavecchio & Bonnoli 2016 Tavecchio et al. in preparation

Some (a bit pessimistic) conclusions

Test of LIV challenging for persistent extreme HBL

Extreme (rare?) states of Mkn 501 much more promising

Exciting topic for CTA

Table 1

A selection of limits obtained with various instruments and methods for GRBs AGNs, and the Crab pulsar. Limits obtained for linear $\begin{pmatrix} E_{QG}^l \end{pmatrix}$ and quadratic $\begin{pmatrix} E_{QG}^q \end{pmatrix}$ corrections are given.

Source(s)	Experiment	Method	Results ^a	Reference	Note
GRB 021206	RHESSI	Fit + mean arrival time in a spike	$E_{\mathrm{QG}}^l > 1.8 \times 10^{17} \mathrm{~GeV}$	Boggs et al. (2004)	b,c
GRB 080916C	Fermi GBM + LAT	Associating a 13 GeV photon with the trigger time	$E_{QG}^{l} > 1.3 \times 10^{18} \text{ GeV}$ $E_{QG}^{q} > 0.8 \times 10^{10} \text{ GeV}$	Abdo et al. (2009a)	
GRB 090510	Fermi GBM + LAT	Associating a 31 GeV photon with the start of any observed emission	$E_{QG}^{l} > 1.5 \times 10^{19} \text{ GeV}$ $E_{QG}^{q} > 3.0 \times 10^{10} \text{ GeV}$	Abdo et al. (2009b)	d
9 GRBs	BATSE + OSSE	Wavelets	$E_{QG}^{l} > 0.7 \times 10^{16} \text{ GeV}$ $E_{QG}^{q} > 2.9 \times 10^{6} \text{ GeV}$	Ellis et al. (2003)	b
15 GRBs 17 GRBs 35 GRBs	HETE-2 INTEGRAL BATSE + HETE-2 + Swift	Wavelets Likelihood Wavelets	$\begin{array}{l} E_{\rm QG}^l > 0.4 \times 10^{16} \ {\rm GeV} \\ E_{\rm QG}^l > 3.2 \times 10^{11} \ {\rm GeV} \\ E_{\rm QG}^l > 1.4 \times 10^{16} \ {\rm GeV} \end{array}$	Bolmont et al. (2008) Lamon et al. (2008) Ellis et al. (2006), Ellis et al. (2008)	e f g,h
Mrk 421	Whipple	Likelihood	$E_{\mathrm{QG}}^l > 0.4 \times 10^{17} \mathrm{~GeV}$	Biller et al. (1999)	b,i
Mrk 501	MAGIC	ECF	$E_{QG}^{l} > 0.2 \times 10^{18} \text{ GeV}$ $E_{QG}^{q} > 2.6 \times 10^{10} \text{ GeV}$	Albert et al. (2008)	
		Likelihood	$E_{QG}^{qG} > 0.3 \times 10^{18} \text{ GeV}$ $E_{QG}^{q} > 5.7 \times 10^{10} \text{ GeV}$	Martinez and Errando (2009)	
PKS 2155-304	H.E.S.S.	MCCF	$E_{QG}^{l} > 7.2 \times 10^{17} \text{ GeV}$ $E_{QG}^{q} > 0.1 \times 10^{10} \text{ GeV}$	Aharonian et al. (2008)	
		Wavelets Likelihood	$E_{QG}^{\Gamma} > 5.2 \times 10^{17} \text{ GeV}$ $E_{QG}^{I} > 2.1 \times 10^{18} \text{ GeV}$ $E_{QG}^{q} > 6.4 \times 10^{10} \text{ GeV}$	Abramowski et al. (submitted for publication)	
Crab pulsar	EGRET	Shift of pulsation maxima in different energy bands	$E_{\rm QG} > 0.4 \times 10^{-10} {\rm GeV}$ $E_{\rm QG}^{l} > 0.2 \times 10^{16} {\rm GeV}$	Kaaret (1999)	