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b) Use of Monte Carlo event generator EPOS (Energy
conserving multiple scatterings, Parton Ladders, Off shell
remnants, Saturation) and JEWEL (Jet Evolution With
Energy Loss) — Justification...

c) Results

d) Summary



Collectivity in heavy ion collisions
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* Ridge : Well known feature from Pb-Pb collisions (indicates
collective flow of a thermalized medium). Not expected in small
collision systems(Initially)... 3
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“* Ridge, v,, mass dependence of spectra etc are the signatures of formation of
thermalized de-confined medium in ultra-relativistic heavy ion collisions. 4



Jet-medium interaction : Jet Quenching
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+» High pT particles originate from jet fragmentation.

% Jet looses energy in the medium and the less energy available for high p;
particle production.



Jet-medium interaction : Dijet Asymmetry
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With increase in asymmetry, the away side jet will be more quenched and

the quenched energy will produce low and intermediate p; particles at larger jet
cone = can be investigated in terms of correlation observables... 6



Jet-medium interaction : Suppressed away side correlation
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¢ The away side jet traverses larger distance inside the medium and gets more

quenched.
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Description of a complete heavy ion event:

Jets + Hydrodynamically evolving deconfined medium

(High p; phenomena) (Low p; phenomena)

AND

Interaction between the two
(influences particle production strongly upto p; 20 GeV/c)

In EPOS: PYTHIA generated jets traverse through hydrodynamically
evolving medium.

In JEWEL: PYTHIA generated jets traverse through a static ensemble
of partons whose phase space distribution and flavor composition
are determined by an external medium model. g



Jet Fragmentation in event generators (PYTHIA)

+* Not known properly and can’t be constructed from first principle
+* Completely model dependent

+»» Based on experimentally observed information :

1) Quarks have never been observed as free.

2) Asymptotic freedom (quarks behave as free for large momentum transfer i.e when they are
spatially very close).

These two features can be implemented using string dynamics (F=-Kr)
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String fragmentation can explain the jet spectra in pp collisions at

the LHC energies Phys. Rev. C 85, 064907 (2012)
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¢ PYTHIA can explain the inclusive p; distribution of jets in pp collisions at 7
TeV

 We will investigate the modification to the jet substructure due to
different schemes of jet-medium interactions as implemented in EPOS and
JEWEL event generators. 10



Jet-medium interaction: Nuclear modification factor

charged hadrons (|| < 0.8)
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JEWEL can’t explain the particle
production upto pT 20 GeV/c.

Somewhat expected as the medium
is considered as static ensemble of
partons!!.

The p, region upto 20 GeV/c is important.
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Jet-medium interaction in EPOS

‘\ﬂl|_|l|\ TT

I
-

PbPb 2.76 TeV

~
20-30% T —~

—
m——
— e — -

I|III|II|II|IIIIlIlIII|III|II|III

o JIIWIIII|IIH|II

¢ Interaction between Jet and hydrodynamically
evolving medium:

¢ Partonic energy loss (primary)
+
In medium Fragmentation + hadronic cascade
(Secondary)
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Jet-medium interaction in EPOS

Lowest Multiplicity class
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Figure 2: (Color online) Flux tube breaking via ¢ — ¢ produc-
tion, which screens the color field (Schwinger mechanism).
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String fragmentation/flux tube breaking using (b)
partons from the bulk/core. a /]
The probability of core-corona interaction is higher in —
higher multiplicity classes. K

Figure 3: (Color online) Escaping string segment, getting it's
endpoint partons from the fluid. We show the case of a quark
and an antiquark (a) and of a quark and a diquark (b). The
rest of the string dissolves in matter. 13



Jet medium interaction: Jet peak shape broadening

@ Interaction with longitudinal flowing medium
Romatschke, Phys. Rev. C75 (2007) 014901
Armesto, Salgado, Wiedemann, Phys. Rev. C72 (2005) 064910
Armesto, Salgado, Wiedemann, PRL 93,242301 (2004)

Vacuum Static medium: Flowing medium:
(reference) Broadening Anisotropic shape

@ Interaction with turbulent color fields

Majumder, Muller, Bass, Phys. Rev. Lett. 99 (2007) 042301

@ Double hump-shape in the energy distribution of the jet
Armesto, Salgado, Wiedemann — PRL 93,242301 (2004)

** Can be studied by measuring the centrality evolution of width of the jet
peak in correlation studies. 14



Jet Shapes

s+ Jet shape observables describe the the distribution of jet transverse momenta
inside the jet cone and provide important information about the in-medium
modification to the sub structure of the jet .

*»* The differential jet shape:

rack
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where the numerator denotes the summation of the
momenta of all charged particles inside the annular ring
between r, = r — or/2 and ry, = r + or /2.

 Angularity:

where pr; denotes the transverse momentum of i-th
constituent of the jet and AR ; 1s the distance between 15
i-th constituent of the jet and the jet axis in (1), ¢) space.



Differential jet shape
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¢ In heavy ion collisions, the jet core has been found to be more collimated and
harder compared to the pp collisions at the same reconstructed jet energy,
accompanied by a broadening of the jet at it’s periphery. 16



Model Study: Differential jet shape

Distance (r)

** The energy lost by the jets
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from the jet axis.

*** The secondary jet-fluid
Interactions during in-medium
fragmentation and hadronic
cascade plays an Important role.
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** EPOS With R=0.3 can
qualitatively explain the data.

*¢* JEWEL (recoil OFF) is unable to
explain the pattern.

Results submitted to PRC...
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Angularity
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¢ The jet core is harder in EPOS 3.
s Jet is broadened at the periphery.

+* Consistent with differential jet shape
measurement.

*» Angularity measures the first moment
of the constituent p; distribution in the jet
and measures the radial energy profile of
the jet.

Results submitted to PRC...
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JEWEL with recoil ON can explain jet shapes BUT...

JEWEL+PYTHIA (O
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s The treatment of recoiling partons is still schematic.

s It is currently also impossible to perform the subtraction for particles (for instance
in the fragmentation functions), due to the mix of parton and hadron level in the

subtraction.

s Most importantly, it can’t describe the nuclear modification factor along

with collective behaviors in heavy ion collisions.
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Summary and Outlook:

1. The interaction between jet and hydrodynamically evolving
medium can explain the in-medium modification of the jet substructure
in a better way compared to JEWEL (recoil OFF) event generator.

2. In addition to the partonic energy loss, the secondary jet-fluid
Interactions during in-medium fragmentation and hadronic
cascade plays an Important role and can be instrumental in the
realistic modeling of jet-medium interaction.

3. A better modeling of the background medium in JEWEL is required
to describe of the broad spectrum of observables used to characterize the
collectivity and jet-medium interaction in heavy ion collisions in a consistent way.

Thank You...
20
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Jet medium interaction: Jet peak shape broadening
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Results: Ridge from different origins
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Multiplicity dependence of near side ridge from different origins
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Relative contributions of different physics mechanisms towards “tota
All-
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Hydrodynamics is playing the main role but jet- medium interaction and flux tube
initial condition have non zero contributions.
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Relative contributions of different physics mechanisms towards “total” ridge

Multiplicity dependence
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¢ In the 60-100% event class, the total ridge (“All-All”) is much smaller than the same in the
0-20% event class.

+* Ridge in 0-20% event class is dominated by the core triggered correlations.

+* Ridge in 60-100% event class is dominated by the corona triggered correlations. 18
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Ridge from jet-medium interaction in p-Pb collisions at ./syy = 5.02 TeV

Debojit Sarkar and Subhasis Chattopadhyay
Variable Energy Cyclotron Centre, HBNI, 1/AF-Bidhannagar, Kolkata-700064, India
(Received 21 August 2016; revised manuscript received 1 March 2017; published 13 April 2017)

In this paper we report the effect of the jet-medium interplay as implemented in the EPOS 3 model on the
ridgelike structure observed in high-multiplicity p-Pb collisions at /sy, = 5.02 TeV. EPOS 3 takes into account
hydrodynamically expanding bulk matter, jets and the jet-medium interaction. The basis of this model 1s multiple
scatterings where each scattering finally produces flux tubes (strings). In the higher multiplicity event classes
where the density of flux-tubes (strings) is higher, there is a finite probability that the strings will pick up quarks
and antiquarks (or diquarks) from the bulk (core) for flux-tube breaking to produce jet hadrons (corona) instead
of producing them via the usual Schwinger mechanism. This will eventually create a correlation between core
and corona and also influence the corona-corona correlation because the corona particles containing quarks and
antiquarks (or diquarks) from the bulk also carry the fluid information. We report the relative contributions of the
core-core, core-corona, corona-core, and corona-corona correlations toward the ridge in high- and low-multiplicity
p-Pb collisions at \/syy = 5.02 TeV using the data generated by EPOS 3. The multiplicity evolution of the ridges
in all the cases is also reported.

DOL: 10.1103/PhysRev(C.95.044906



Possible contributors to Ridge (Known till date):

1) Hydrodynamics
2) Flux tube like initial conditions (CGC)
3) Jet-medium interaction = Why should we bother about it??

4) Answer: Motivated by the experimentally observed pattern of
fluid-jet interaction in heavy ion collisions...




V., (107

Phys. Rev. C 85, 064907 (2012)

Effect of Jet-Fluid interaction on final state observables
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s The secondary jet fluid interactions are extremely important to explain the
Particle production upto pT 20 GeV/c.
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Width of the near side peak

® The near-side is fitted to characterize its shape evolution

@ Fit function: background + Generalized Gaussian
e Background:

G+ 3% 2V, cos(nAy)
@ Generalized Gaussian:

N x e_' b

~v = 1: Exponential
v = 2: Gaussian

TP |dn

W'r,

de
Wep

—\——/’/V — C2 X

sl ()1 ()

@ Characterize peak by variance of generalized Gaussian:

2 _ w’l(3/)
o T T
@ No attempt to give physical meaning to parameters of the

generalized Gaussian
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Jet-medium interaction modifies the near side jet-peak width
in Pb-Pb collisions

Phys. Rev. C88 (2013) 044910 and Phys. Rev. Lett. 105 (2010) 252302
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® Ordering of the width according to pr
@ Width in An in 50-80% is already larger than in pp

@ Very pronounced increase at low pp in An
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LONG RANGE ANGULAR CORRELATION—INITIAL STAGE EFFECT

» Correlation function:
- Partons from the same tube are correlated

- Correlations between tubes are negligible

1 2 . o g 4 2] i ) QN " 2l 2 4 o - 2) A .
Figure 4: Glasma flux tubes. The transverse size of the flux tubes is of order A& B e / detection
COCoLund (pep 7 TeV), <N, / (N,) <8 \ y freeze out

\ latest correlation

1.02
0.3<pT <4 GeV
8 1.01 Opy <! GeV
z *Z
S ]
Figure 1: The red and green cones are the location of the events in causal
relationship with the particles A and B respectively. Their intersection is the

location in space-time of the events that may correlate the particles A and B.

@ If there is no medium formation due to the collision, the correlation between two correlated
particles separated by large pseudorapidity difference must be originated at an earlier time =

causality argument.
(carrying some signature of initial stage effect)



EPOS 3 is not a simple Hydro only Model:
It consists:

1) Flux tube initial conditions (CGC like).

2) Hydrodynamically expanding bulk matter (high density area or core)

1.5
n. = 1.00

y (fm)

1
0.5

Phys. Rev. Lett. 112, 232301

O

-0.5

-1 core-corona separation

;Jl LT IIII|I I IIIIIII II I

_1‘5 111
1 1.5

x (fm)

3)Jets produced via Schwinger mechanism (low density area or corona)

|
[

4)Interaction between the Jet (corona) and bulk (core)

In principle different components mentioned above may contribute to

the ridge like structure which has never been investigated... :



