Nuove Tecniche di Accelerazione

Massimo.Ferrario@lnf.infn.it

Previous strategic recommendations

- The European Strategy for Particle Physics in 2013 calls for a "... vigorous accelerator R&D programme, including high-field magnets and high-gradient accelerating structures...".
- The May 2014 Particle Physics Project Prioritization Panel report on "Building for Discovery – Strategic Plan for U.S. Particle Physics in the Global Context" identifies the "critical need for technical breakthroughs that will yield more cost-effective accelerators. For example, ultrahigh gradient accelerator techniques will require the development of power sources ..., and accelerating structures (plasmas, metallic, and dielectric) that can sustain high average power, have high damage threshold, and can be cascaded."

High Gradient Options

 RF accelerating structures, from X-band to K-band => 100 MV/m < E_{acc} < 1 GV/m

 Dielectrict structures, laser or particle driven => 1 GV/m < E_{acc} < 5 GV/m

 Plasma accelerator, laser or particle driven => 1 GV/m < E_{acc} < 100 GV/m

X-band RF structures best performances

LINAC16, East Lansing, 27 September 2016

Walter Wuensch, CERN

Innovative compact braze-free joints accelerating cavity at X band (SLAC/INFN-LNF) [submitted on July 2018 to Journal of Instrumentation (JINST) for publication]

Motivations for future innovative accelerators:

- Avoids high tempersture processes
- Cells joined together by means of specifically designed and proprietary screws which ensure good vacuum and RF contacts
- Use the Electron beam welding (EBW) and Tungsten Inert gas (TIG) processes
- Remarkable improvements of the RF perfomance
- Strong costs reductions
- Strong increase of the accelerating field Eacc >> 100 MV/m

Both structures are under high power tests at SLAC

 Next step is to fabricate 24 regular cells by using the TIG process;

• Study for scaling to 100 GHz by using the braze-free technique is undergoing.

Side-view of the two structures

- 1. Special hollow screws
- 2. Channel for pumping the secondary vacuum chamber
- 3. Primary RF chamber

Auditorium Antoniarum September 6-7, 2018 Rome - I

Solid model

EU Design Study Approved

3 years – 3 MEuro Coordinator: G. D'Auria (Elettra) Focus on X-band technology

The key objective of the CompactLight Design Study is to demonstrate, through a conceptual design, the feasibility of an innovative, compact and cost effective FEL facility suited for user demands identified in the science case.

High field ->Short wavelength->ultra-short bunches-> low charge

High- Gradient Acceleration structure at 110 GHz at MIT

Moving Forward to Test @ MIT, Target 1 MW Eacc > 400 MeV/m

Plasma Wakefield Acceleration

Breakdown limit?

$$E_0 = \frac{m_e c \omega_p}{e} \approx 100 [\frac{GeV}{m}] \cdot \sqrt{n_0 [10^{18} cm^{-3}]}$$

Capillary Discharge

Laser Driven

Experiments at LBNL use the BELLA laser focused by a 14 m focal length off-axis paraboloid onto gas jet or capillary discharge targets

4.25 GeV beams have been obtained from 9 cm plasma channel powered by 310 TW laser pulses (15 J)

Science

ERKELEY LAB

LETTER

Multistage coupling of independent laser-plasma accelerators

S. Steinke¹, J. van Tilborg¹, C. Benedetti¹, C. G. R. Geddes¹, C. B. Schroeder¹, J. Daniels^{1,3}, K. K. Swanson^{1,2}, A. J. Gonsalves¹, K. Nakamura¹, N. H. Matlis¹, B. H. Shaw^{1,2}, E. Esarey¹ & W. P. Leemans^{1,2}

*¥

Parameter Set for LPWA LC

Case: CoM Energy	1 TeV	1 TeV	10 TeV	10 TeV	١
(Plasma density)	$(10^{17} \mathrm{cm}^{-3})$	$(2 \times 10^{15} \text{ cm}^{-3})$	$(10^{17} \mathrm{cm}^{-3})$	$(2 \times 10^{15} \text{ cm}^{-3})$	
Energy per beam (TeV)	0.5	0.5	5	5	
Luminosity $(10^{34} \text{ cm}^{-2} \text{s}^{-1})$	2	2	200	200	
Electrons per bunch ($\times 10^{10}$)	0.4	2.8	0.4	2.8	
Bunch repetition rate (kHz)	15	0.3	15	0.3	0
Horizontal emittance $\gamma \varepsilon_x$ (nm-rad)	100	100	50	50	0
Vertical emittance $\gamma \varepsilon_y$ (nm-rad)	100	100	50	50	<u>ē</u>
β* (mm)	1	1	0.2	0.2	0
Horizontal beam size at IP σ_x^* (nm)	10	10	1	1	
Vertical beam size at IP σ_y^* (nm)	10	10	1	1	
Disruption parameter	0.12	5.6	1.2	56	
Bunch length σ_z (µm)	1	7	1	7]
Beamstrahlung parameter Υ	180	180	18,000	18,000	
Beamstrahlung photons per e, n_{γ}	1.4	10	3.2	22	
Beamstrahlung energy loss δ_E (%)	42	100	95	100	9
Accelerating gradient (GV/m)	10	1.4	10	1.4	<u>(</u>
Average beam power (MW)	5	0.7	50	7]
Wall plug to beam efficiency (%)	6	6	10	10	
One linac length (km)	0.1	0.5	1.0	5	×2+FF

Beam Driven PWFA

Blumenfeld, I. et al. *Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator*. Nature 445, 741–744 (2007).

Litos, M. et al. *High-efficiency* acceleration of an electron beam in a plasma wakefield accelerator. **Nature** 515, 92–95 (2014).

Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield

S. Corde^{1,2}, E. Adli^{1,3}, J. M. Allen¹, W. An^{4,5}, C. I. Clarke¹, C. E. Clayton⁴, J. P. Delahaye¹, J. Frederico¹, S. Gessner¹, S. Z. Green¹, M. J. Hogan¹, C. Joshi⁴, N. Lipkowitz¹, M. Litos¹, W. Lu⁶, K. A. Marsh⁴, W. B. Mori^{4,5}, M. Schmeltz¹, N. Vafaei-Najafabadi⁴, D. Walz¹, V. Yakimenko¹ & G. Yocky¹

CONCEPTUAL DESIGN OF THE DRIVE BEAM FOR A PWFA-LC*

S. Pei[#], M. J. Hogan, T. O. Raubenheimer, A. Seryi, SLAC, CA 94025, U.S.A. H. H. Braun, R. Corsini, J. P. Delahaye, CERN, Geneva

Table 1: Key Parameters of the Conceptual Multi-Stage PWFA-based Linear Collider

Main beam: bunch population, bunches per train, rate	1×10 ¹⁰ , 125, 100 Hz	
Total power of two main beams	20 MW	
Drive beam: energy, peak current and active pulse length	25 GeV, 2.3 A, 10 μs	
Average power of the drive beam	58 MW	
Plasma density, accelerating gradient and plasma cell length	$1 \times 10^{17} \text{cm}^{-3}$, 25 GV/m, 1 m	
Power transfer efficiency drive beam=>plasma =>main beam	35%	
Efficiency: Wall plug=>RF=>drive beam	$50\% \times 90\% = 45\%$	
Overall efficiency and wall plug power for acceleration	15.7%, 127 MW	
Site power estimate (with 40MW for other subsystems)	170 MW	
Main beam emittances, x, y	2, 0.05 mm-mrad	
Main beam sizes at Interaction Point, x, y, z	0.14, 0.0032, 10 μm	
Luminosity	$3.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$	
Luminosity in 1% of energy	$1.3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$	

European Network

AIVAKE

Proton-driven Plasma Wakefield Acceleration Collaboration: Accelerating e⁻ on the wake of a p⁺ bunch

Discharge configuration II

preliminary tests with the AWAKE 3 meter test tube at IC - 2016

very promising results ... reliable, low jitter plasma formation

scalability of electric circuit for plasmas > 10 m seem achievable...

nature Accelerated Article Preview

LETTER

doi:10.1038/s41586-018-0485-4

Acceleration of electrons in the plasma wakefield of a proton bunch

E. Adli, A. Ahuja, O. Apsimon, R. Apsimon, A.-M. Bachmann, D. Barrientos, F. Batsch, J. Bauche, V.K. Berglyd Olsen,

Experimental Results

- Mean energy of 800 ± 40 MeV, => $E_{acc} \sim 150$ MV/m
- FWHM of 137.3 ± 13.7 MeV => Spread >10%
- Total charge of 0.249 ± 0.074 pC => Low charge transmission

Worldwide effort towards high quality plasma beams

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

EuPRAXIA Design Study started on Novemebr 2015 Approved as HORIZON 2020 INFRADEV, 4 years, 3 M€ Coordinator: Ralph Assmann (DESY)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

http://eupraxia-project.eu

PRESENT EXPERIMENTS

Demonstrating **100 GV/m** routinely

Demonstrating **GeV** electron beams

Demonstrating basic **quality**

EuPRAXIA INFRASTRUCTURE

Engineering a high quality, compact plasma accelerator

5 GeV electron beam for the 2020's

Demonstrating user readiness

Pilot users from FEL, HEP, medicine, ...

PRODUCTION FACILITIES

Plasma-based linear collider in 2040's

Plasma-based **FEL** in 2030's

Medical, industrial applications soon

Location of possible sites within EU

EuPRAXIA site studies:

- Design study is site independent
- Five possible sites have been discussed so far
- We invite the suggestions of additional sites

Central Laser Facility Didcot, United Kingdom

Eli Beamlines Prague, Czech Republic

EuPRAXIA@SPARC_LAB

http://www.lnf.infn.it/sis/preprint/pdf/getfile.php?filename=INFN-18-03-LNF.pdf

- Candidate LNF to host EuPRAXIA (1-5 GeV)
- FEL user facility (1 GeV 3nm)
- Advanced Accelerator Test facility (LC) + CERN

- 500 MeV by RF Linac + 500 MeV by Plasma (LWFA or PWFA)
- 1 GeV by X-band RF Linac only
- Final goal compact 5 GeV accelerator

External Injection

$$\Delta T_{w} = \left(R - \frac{q}{Q}\right) \left|\Delta T_{D}\right|$$

$$R \cong 2$$

Future of Accelerators

Conclusions

(Statement from the European Network for Novel Accelerators (EuroNNAc))

- Accelerator-based High Energy Physics will at some point become practically limited by the size and cost of the proposed e⁺e⁻ colliders for the energy frontier.
- Plasma-based acceleration techniques have demonstrated accelerating gradients up to 3 orders of magnitudes beyond presently used RF technologies.
- Plasma-based, ultra-high gradient accelerators therefore open the realistic vision of very compact accelerators for scientific, commercial and medical applications.
- The R&D now concentrates on beam quality, stability, staging and continuous operation. These are necessary steps towards various technological applications.
- The progress in advanced accelerators benefits from strong synergy with general advances in technology, for example in the laser and/or high gradient RF structures industry.
- A major milestone is an operational, 1 GeV compact accelerator. Challenges in repetition rate and stability must be addressed. This unit could become a stage in a high-energy accelerator... PILOT FACILITY Needed
- An increased support from Particle Physics will foster the R&D on advanced acceleration techniques and will provide important help and guidance.
- Ultra-high gradient plasma accelerators should be recognized and listed as essential inter-disciplinary R&D towards future eter colliders for HEP.

Grazie per l'attenzione

European Plasma Roadmap for HEP - Example, based on personal view of a few persons

Drafted January 2016, Plasma LC Workshop at LBNL

As a start of discussion, not an end point of discussion. Cannot be used as an official roodmap, should trigger discussions and thoughts. Requires input, discussion, iteration, refinement, To be complemented by detailed R&D roadmaps from WG's.

Direct Wakefield Acceleration

Dielectric Wakefield Accelerator

GV/m fields in DWA

- High-fields with small ID structures
 - Compressed beam (<25µm)
 - High charge (3nC)
- Beam centroid data
 - Measured Energy loss of 200 MeV
 - 1.3 GeV/m deceleration
 - 2.6 GeV/m peak field
 - Strong agreement with PIC simulations
- Continuous operation of >28hours (>100k shots at 10 Hz rep)
- No signs of damage or performance deterioration

Electron Acceleration using THz waveguide

Laser-Structure Coupling: TW

GALAXIE Dual laser drive structure, large reservoir of power recycles

ILC – International Linear Collider

- Members of LEAPS: Photon science labs in Europe with user facilities.
- Federates potentially the EU funding of the super advanced community of photon science from 2021
- Includes a section on accelerator technology and a work package on future compact light sources.
- Present funding discussed presently: 198 M€ for acc. R&D over 7 years from 2021.
- About 20% might directly/indirectly profit advanced accelerators (amongst others EuPRAXIA coll.)

International Initiatives

How can we develop plasma accelerators towards usability?

ALEGRO for Advanced LinEar collider study GROup, has been set up to coordinate preparation of proposal for an Advanced Linear Collider in multi-TeV energy range.

Objective of ALEGRO workshop: prepare and deliver, by the end of 2018, a document detailing the international roadmap and strategy of advanced novel accelerators (ANAs) with clear priorities as input for the European Strategy Group, as well as input to ICFA "Accelerator on a Chip" grant from Moore foundation for work by/at Stanford, SLAC, U Erlangen, DESY, U Hamburg, PSI, EPFL, U Darmstadt, CST, UCLA

- Lasers drive structures that are engraved on microchips (e.g. Silicium)
- · Major breakthroughs can be envisaged:
 - Mass production
 - Implantable accelerators for in-body irradiation of tumors
 - Accelerators for outer space

