

Il ruolo delle onde gravitazionali nella futura strategia particellare

Michele Punturo

INFN Perugia

Grazie ai contributi di: D. Bertacca, N. Bartolo, G. Losurdo, M. Maggiore, S. Matarrese, M. Peloso, F. Ricci, B. Sathyaprakash, J. van den Brand...

M.Punturo - GW & HEPF

2015-2017: Scientific revolution (IO)/VIRC

- he detection of GW has been a huge scientific achievement, result of a century of efforts, but actually it is the beginning of a new era in the observation of the Universe
- he discoveries announced by LIGO and Virgo are crucial milestones in Science:
- GW150914:
 - the first direct detection of GW. Confirmation of the Einstein's prediction of GW. Discovery/ Confirmation of the existence of stellar mass black holes. Birth of the experimental physics of the gravitation in strong field and of the astrophysics of stellar mass black holes
- GW170814:
 - The first detection in a network of 3 GW detectors of GW emitted by the coalescence of black holes. The first test of GW polarisation. The birth of the gravitational wave astronomy and astrophysics thanks to the localisation capability.
- GW170817:
 - The first detection of the GW emitted by the coalescence of two Neutron Stars. Test of GR versus
 alternative theories of gravity. The birth of the multi-messenger astronomy and astrophysics with GW

Network of GW detectors

2019

KAC

aLIGO Livingston, 4 km

LIGO

2015 u

LIGO

Scientific Collaboration:
1263 collaborators (including GEO)
20 countries
3 computing centres
~1.5 G\$ of total investment

AdV, Cascina, 3 km

201

Virgo Collaboration:

- 343 collaborators
- 8 countries
- 5 computing centres
- ~0.42 G€ of total investment

GEO, Hannover, 600 m

~2025

It will operate as part of the LIGO Network and Collaboration

KAGRA Collaboration:

- 260 collaborators
- 12 countries
- 5 computing centres
 - ~16.4 G¥ of construction

Short term evolutions

Five year plan for observational runs, commissioning and upgrades

Note: duration of O4 has not been decided at this moment

VIR-0943A-17

What Next?

e worldwide GW community elaborated a roadmap for the next 15-20 year

- rrent detectors will be updated in order to "listen" better and further, unti e limits of the current infrastructures will be reached
- Virgo will achieve these limits earlier than LIGO
- For this reason the European GW community started well in advance (2004/2008) to
- elaborate the future perspectives
- ET: Einstein Telescope
 - 3rd generation GW observatory
 - Site location in Europe under discussion
- US GW community is now following with the Cosmic Explorer idea
- A worldwide coordination is under definition thanks to a global committee (GWIC-3G)

ET collaboration: Letter of Intent

- ldressed to all the ientists and gineers interested the 3G GW ience and
- chnology
- e signatories (636 ersons, the 3rd of ptember) obably will come the future embers of the ET llaboration

M.Punturo - GW & HEPP

ET: the project roadmap

- has a clearly defined project roadmap, presented to APPEC:
- 2018 Form the ET collaboration
- 2019 ESFRI roadmap
 - In Nov 2018 ET and the GW GRI (Global Research Infrastructure) will be presented as case study to the body GSO (Group of Senior Officer)
 - We need to define the site selection parameters before to submit the proposal
 - The requirement to be compliant with alternative design options (Δ vs L) could be a crucial point
- 2021-2022 Site Selection
 - Technical/political activity
 - Requirements need to be compared with the site characteristics through an intense experimental activ the next 3 years
- 2023 Full Technical Design Report

Here, the design options are frozen

- Cost definition
- 2025 Infrastructure realization start (excavation,)
- 2030 -2031 end of infrastructure construction, beginning of installation
- 2032+: installation / commissioning / operation

erché la comunità scientifica HEPP dovrebbe ssere fortemente interessata all'evoluzione lella fisica GW?

erché vogliamo inviare un documento «GW» er la roadmap europea della fisica delle articelle?

HEPP and GW physics similitudes & synergies

militudes

- Both HEPP and GW physics evolutions are aiming to
 - High rates (events pileup ↔ astrophysical stochastic background)
 - High energy

Phys. Rev. D 94, 084002 (2016)

M.Punturo - GW & HEPP

HEPP and GW physics similitudes & synergies

ET EINST

ynergies

- There are strong synergies in the Physics and Technologies in the two fields
- Physics: $GW \rightarrow HEPP$
- Technology: HEPP \rightarrow GW

ome of the questions addressed by GW (AdV+, ET)

HEPP

ndamental questions in Gravity:

- New/further tests of GR
- Exploration of possible alternative theories of Gravity
- How to disprove that Nature black holes are black holes in GR (e.g. non tensorial radiation, quasi normal modes inconsistency, absence of horizon, echoes, tidal deformability, spin-induced multipoles)

HEPP

- ndamental questions in particle physics
- Axions and ultralight particle through the evaluation of the consequences of new interactions, their impact on two bodies mechanics, in population and characterisics of BHs, NSs
- bing the EOS of neutron stars

- Nuclear physics, quark-gluon plasma HEPP
- otic objects and phenomena (cosmic strings, exotic compact objects: boson stars, strange stars/gravastars, ...)
- smology and Cosmography with GWs
- curate Modelling of GW waveforms
- / models in alternative theory of gravitation **HEPP** Cosmology
- e population of compact objects discovered by GWs is the same measured by EM? Selection effects on BHs and NSs
- nat is the explosion mechanism in Supernovae? nat is the history of SuperMassive black holes?
- / Stochastic Background? Probing the big bang? Iltimessenger Astronomy in 3G?
- HEPP Nuclear physics
 - HEPP Cosmology, inflation
- **HEPP** Astroparticle, GRB, Neutrino Physics

HEPP Cosmology

Fundamental interactions, Dark matter, dark energy

Inflation, additional interactions, dark matter

Dark Matter?

O-Virgo detections

LIGO-Virgo | Frank Elavsky | Northwestern

M.Punturo - GW & HEPP

Primordial Black holes as Dark Matter (element?) Gravitational dynamics of galaxies and clusters is indicating a mass excess in he galaxies halo $T_{\mu\nu}^{WIMP} = T_{\mu\nu}^{axion}$

ions and GW

e introduction of light scalar fields is a possible extension of the Particle standar odel

- Axions could be a component of the dark matter or dark energy
- Axions could provide an inflation mechanism

hat GW could tell about Axions? BNS and spinning BH (Super-Radiance)

kions, coupled to matter, can mediate new long range interactions between mpact bodies:

- They modify the dynamics of the coalescence and merging of BNS through two mechanisms
 - Axion mediated force $\mathbf{F} = Q \downarrow 1 \ Q \downarrow 2 \ /4 \pi r \uparrow 2 \ e^{\uparrow} r / \lambda \downarrow a \ r$ where $Q = \pm 4 \pi (\pi f \downarrow a \ R \downarrow NS)$ are the scalar charges of the NS
 - The force can be attractive or repulsive according to the scalar charge

Black Hole Superradiance

hen the Compton wavelength $\hbar/(m \downarrow s C)$ of the light bosons (axions) of mass m_s in a bud surrounding a black hole is comparable to the size of the BH (R=2GM/c12), a ravitational atom" is formed

The bosonic field trapped by its mass around the BH, under certain circumstances, can produce emissi (lasing) of a quasi-monochromatic GW extracting energy from the angular momentum of the BH

e emitted wave can be either detected directly or as stochastic background, but the mi reresting approach is statistical

Alternative theories of Gravity

et go back to the Einstein Field Equation:

 Maybe it is possible to match the dynamics mimed by DM modifying the gravity (curvature)

$$G_{\mu\nu} + G_{\mu\nu}' = \frac{8\pi G}{c^4} T_{\mu\nu}$$

- Alternative theories of gravity; they could predict massive graviton, different propagation velocity of em and GW, extra polarisations of GW (2 in GR, up to 6 in modified gravity)
- Present and future GW detectors are setting stringent limits
 - GW170814:
 - Thanks to the presence of Virgo has been possible the evaluate the contribution of extra polarisations in the detected GW resulted strongly disfavoured

Is the Graviton massless?

the graviton has mass>0 the GW propagates slowly and with dispersion

- Dispersion relation: $E^2 = p^2 c^2 + m_g^2 c^4$ • $\lambda_g = h/(m_g c)$
- Thanks to **GW170104**, measured at about 3 billions of light years it is possible to set an upper limit:

$$\lambda_g > 1.6 \times 10^{13} \, km \Rightarrow m_g < 7.7 \times 10^{-23} \, eV \, / \, c^2$$

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

 γ (photon)

 $I(J^{PC}) = 0,1(1^{-})$

γ MASS

Results prior to 2008 are critiqued in GOLDHABER 10. All experimental results published prior to 2005 are summarized in detail by TU 05.

The following conversions are useful: $1 \text{ eV} = 1.783 \times 10^{-33} \text{ g} = 1.957 \times 10^{-6} m_e$; $\lambda_C = (1.973 \times 10^{-7} \text{ m}) \times (1 \text{ eV}/m_{\gamma})$.

VALUE (eV)	<u>CL%</u>	OCUMENT ID	TECN	COMMENT
<1 × 10 ⁻¹⁸	¹ R'	YUTOV	07	MHD of solar wind
NA Dupturo CM	/ Q. LIEDD			

M.Punturo - GW & HEPP

ultimessenger Astronomy and Fundamental Physics

The beginning of the multimessenger astronomy, marked by GW170817 lowed several fundamental physics tests $v_{CW} = v_{c}$

- Constrain the difference of speed between γ and GW: $-3 \times 10^{-15} \le \frac{v_{GW} v_{\gamma}}{v_{U}} \le 7 \times 10^{-16}$
- Test the equivalence principle and discard families (tensor-scalar) of alternative theo of gravity
 - Shapiro effect predicts that the propagation time of massless particles in curved spacetime, i.e., through gravitational fields, is slightly increased with respect to the flat spacetime case:

Viable after GW170817 $(c_{g}=c)$ Not Viable after GW170817 ($c_o \neq c$) Horndeski **General Relativity** Quartic/quintic Galileon Quintessence/K-essence "Fab-Four" K-mouflage de Sitter Horndeski Brans-Dicke/f(R) $G_{\mu u}\phi^{;\mu}\phi^{; u}$, Gauss-Bonnet DHOST with $A_1=0=B_i=G_5$ DHOST with $A_1 \neq 0$ or $B_i \neq 0$ or $G_5 \neq 0$ **Beyond H Derivative Conformal Quintic GLPV** Also strongly affected. Also, e.g., - Massive gravity es a gravity

Dark Energy and Dark Matter after GW170817

GWs: many models of modified gravity ruled out!

0817 had consequences for our understanding of Dark Energy and Dark Matter

See, e.g., Ezquiaga & Zumalacarregui '17; Baker et al. '17; Creminelli & Vernizzi '17

A	iso shongiy anected.
-	Vector Dark Energy
-	Einstein Aether theorie
-	Some sectors of Horava
_	TeVeS

- **MOND-like theories**
- Generalized PROCA theories

Nicola Bartolo, private communi

Cosmology with GW

- N by coalescence of compact bodies are standard candles sirens
- N170817 has been the first taste of the potential of the multimessenger tronomy in cosmology:
- Measure of the Hubble constant with an independent method $H_0 = 70.0^{+12.0}_{-8.0} \,\mathrm{km \, s^{-1} \, M}$

GW Stochastic Background and inflation

flation, reheating, preheating models could be distinguishible in the GW stochastich ckground in case of some blue-shift mechanism

 information on: new additional degrees of freedom, interactions and/or new symmetry patterns underlying high energy physics of early universe

Our Collider

Neutron Star is a nuclear physics lab

eutron stars are an extreme laboratory for nuclear physics

- The external crust is a Coulomb Crystal of progressively more neutron-reach nuclei
- The core is a Fermi liquid of uniform neutron-rich matter ("Exotic phases"? Quark-Gluon plas

GW170817: Nuclear Physics "experiment"

e collision of two NS in GW170817 has been a complex nuclear physics periment, where it has been possible

- The accurate measure the mass and radius of the NS through the tidal deformation of the star \rightarrow Constrain the EOS
- To observe the production of heavy elements through r-processes

Constraining the NS EOS

- leasuring the tidal deformation through the ephasing in the GW signal is possible to onstrain the EOS of the NS
- dding the em information helps to impose ore stringent constrain
- Knowing the EOS it is possible to describe the status of the matter in the over-critical pressure condition in the NS

ž

(IO))/IRG

Technologies HEPP \rightarrow GW

urrent and future GW detectors can hugely benefit of the technologies eveloped at CERN for HEPP

- T needs from CERN/HEPP:
- Underground infrastructures
 - Civil Engineering
- Cryogenics (~10K)
 - Large, underground plants, low noise
 - Controls, Safety, handling
- Vacuum (<10⁻¹⁰ mbar)
 - ET, the largest volume under vacuum
 - Controls, safety, handling

- Material and surface science
 - Special materials, surface treatments
- Electronics/Data acquisition
 - Monitoring, timing, high rate DAQ
- Computing
 - Data handling, computing methods, GRID, GPUs

ET infrastructure

will be a complex research infrastructure that ed the expertise developed at CERN and at e LNGS

M.Punturo - GW & HEPP

Cryogenics

- We need to cool down at 10K:
 - large masses (300kg)
 - without touching them in the operative phase
 - Having a cooling time relatively short (few days)
 - Without introducing vibration
 - Without polluting the surfaces
 - Having an "open" cryostat
- In an underground facility
 - Safety issues
 - Accessibility issues

Figure 96: Scheme of the cryostats needed for cooling a test-mass of the LF-interferometer.

Vacuum and Material/Surface science

Vacuum

- ET will be the largest volume under vacuum
- The cost of the vacuum plant will one of the cost driver
 - New solutions?
- Low noise vacuum systems
- Low contamination pumps

Material/Surface science

- Coatings for the mirrors
- Ionization issues
- Surface treatments for the apparatuses under vacuum

Electronics/DAQ - Computing

Electronics/DAQ

- HEPP experience in handling large quantity of experimental data
- Low noise digital and analog electronics:
 - Modulation
 - Timing
 - Actuation and sensing
 - Photosensing
- DAQ

Computing

- HTC and HPC paradigms
 - GPUs
- Data management
 - Rucio, Dirac, ...
 - Data lake
- GRID, Cloud, Virtualisation
- Data preservation

overnance: HEPP \rightarrow GW

- le want to realise a global network of 3G observatories
- nstein Telescope will be the pioneer of this global research frastructure
- urrently we are organised as a "collaboration of collaborations", ut we are aiming to a more structured governance:
- HEPP community is an example to emulate and CERN could be more than a model
 - Synergies in science and technologies are evident
 - A direct involvement of CERN in ET is a valid option to be investigated

onclusions

- the CERN/HEPP roadmap GWs have a ear scientific role
- Many synergies to be explored by scientists of both the disciplines
 - That should appear in the CERN roadmap: devote a chapter/paragraph to this subject
- EPP technologies are of extreme interest of importance for the future of GW, pecially for ET
- An engagement of the HEPP community in GW research is more than welcome: it is necessary!
 - Moral suasion in HEPP to approach GW
 - Stimulate opportunities for joint developments
 - Attract initiative?
- overnance model developed at CERN could an example for ET and the global network 3G observatory
- The interest of CERN on this subject needs to be further investigated and stimulated
 - Propose a direct involvement of CERN in the 3G governance

onclusions

- the CERN/HEPP roadmap GWs have a ear scientific role
- Many synergies to be explored by scientists of both the disciplines
 - That should appear in the CERN roadmap: devote a chapter/paragraph to this subject
- EPP technologies are of extreme interest id importance for the future of GW, pecially for ET
- An engagement of the HEPP community in GW research is more than welcome: it is necessary!
 - Moral suasion in HEPP to approach GW
 - Stimulate opportunities for joint developments
 - Attract initiative?
- overnance model developed at CERN could an example for ET and the global network 3G observatory
- The interest of CERN on this subject needs to be further investigated and stimulated
 - Propose a direct involvement of CERN in the 3G governance

M.Punturo - GW & HEPP