

First checks on quality and alignment: test beam 2018 (first run 300118)

v.1 (1° meeting 15/6/2018)

A. Principe

Apparatus TB 2018: AGILE + MUonE

The key players...

Preliminary simulation of muons behind COMPASS

3 beam conditions (with different beam profiles in energy / angular spread):

- muons from modified M2 (two weeks in April);
- muons from nominal M2;
- muons from pi decays.

We must link these conditions to each of our runs.

 $\sigma x = 93.4 \text{ mm}; \sigma y = 99.8 \text{ mm}$ Flux for 10^{13} pot/spill ~ 10^{6} /cm² *Note: Change of scale*

Deflection of beam downstream (due to SM1 and SM2) ~ 30 cm from undeflected beam axis

One of the first nice results of our preliminary analysis: mysterious circles on hits patterns? No, muon radiography of COMPASS TPC!

First setup, without box 8 (1y-2x) before 7

muONe installation – 09/04 setup * from Mattia Soldani

Some features of AGILE silicon strip detectors:

- 7(+1) stations;
- single-sided, AC-coupled;
- thickness: 410 um;
- 9.5 x 9.5 cm²;
- readout pitch: 242 um with floating strip.

N.B. Upstream condition: multiplicity 1 or 2 on all x plane (2x, 4x, 6x) and on 5y before first target.

As already discussed with Michela, counting problems with:

- plane 3y (2nd ASIC);
- plane 10x (all 3 ASIC): see next slides.

Un-aligned hits (in cm)

SingleTrack: m =1 on all planes.

Hits3y have some counting problems (middle ASIC), even not selecting conditions: this inefficiency pattern propagates itself at the all y planes, if singletrack is required.

• **Hits4x** doesn't have problems, but requiring singletrack it acquires pattern of plane **10x**: see next slide.

Hits10x have some counting problems on all ASIC, even not selecting conditions: this inefficiency pattern propagates at the all x planes, if singletrack is required.

Inefficiency patterns

• SingleTrack condition correlates all plane x/y: 3y and 10x transmit their patterns to the other ones.

Planes shift along z axis

 It seems that efficiency patterns (due to 10x for x hits and to 3y for y) shift proportional to the distances of first reference plane. These hits are un-aligned, but it can be a sign that apparatus is off-axis with respect to the beam or last planes (taken as a reference) are particularly shifted respect to the others.

- Roughly speaking, in x there may be an angle offset of +1.8 cm / 196.30 cm (total x arm) = +9.2 mrad;
- in y: -1.0 cm / 199.6 cm (total y arm) = -5.0 mrad. These offset should be observe after alignment taking 4x-16x and 3y-15y as a references (see slide 11).

Trackers alignment

Alignment procedure:

- transverse x/y shift correction using residuals means;
- rotations about the z-axis using correlations between residuals along x (or y) coordinate and hits in the y (or x) direction.

Possible transformations, along all 3 axis:

- 3 translations
- 3 rotations

Reading the distances scheme, <u>some boxes</u> <u>are affect of all these transformations except</u> <u>translations along z respect to the nominal</u> <u>distances</u> (we hope so).

Selecting singletrack, I tried to correct only rotations about z-axis and transverse translations along x and y using an iterative code (like the one used for the previous test beam):

x' = **x** - *s_resx* - *s_anglex****y y'** = **y** - *s_resy* - *s_angley****x**

(*s_res*: sum shifts after n iterations, *s_angle*: sum angle corrections after n iterations.)

Alignment strategy

muONe installation – 09/04 setup

- Y reference planes: 3y 15 y.
- X reference planes: 4x 16x.
- Checking residuals on the other ones and correlations between residuals and hits.
- Also checking possible correlations between some residuals and income direction to looking for possible problems in the z direction.

Hits post alignment

- Patterns shift proportional to z distances, these behaviors are confirmed even after alignment: taking as reference first and last boxes, muon beam should have an angle, compared to the apparatus, of roughly +9.2 mrad in x and -5.0 mrad in y.
- This observation is found in the incoming angle distribution:

Residuals before alignment

Skipping the stereo planes, which will require a special treatment, <u>all x/y translations are within 5 mm</u>.
In these plot, residuals of uv planes are determined with the reference straight line rotated of +/- 45°.

Residuals vs Hits <u>before</u> alignment

Residuals vs Hits before alignment

All x/y rotations (along z axis) are within 5 mrad: plane 13y is the one with the highest corrections.

uv planes confirm their angles: <u>roughly</u> +45° for 11u, -45° for 14v.

Residuals <u>after</u> alignment

 Plane 5y surely has <u>some</u> <u>alignment problem or</u> <u>something else</u>: no gaussian shape. Maybe problems with hits of different ASIC->**slide 21**.

 Residual of plane 10x are wider than the other ones: it may indicate also some alignment problems.

 Anyway with this alignment attempt, residual means show it is possible to go
below 1 um = 1e-4 cm.

Intrinsic resolution: residuals analysis

- A position resolution of roughly 37-47 micron is indicated as a reference in (1).
- AGILE readout strip pitch: 242 um with "floating strip" (2).
- So geometrical tracker resolution is: 242/2 / sqrt(12) = **34.9 micron**.
- Residual sigmas from our high energy muon data confirm these numbers and also show us that maybe from the "residuals point of view" we can't do anything much better.
- (1) <u>https://www.lnf.infn.it/acceleratori/public/BTF_user/AGILE/nima490agile.pdf</u>
- (2) https://www.lnf.infn.it/acceleratori/public/BTF_user/AGILE/nima501agile.pdf

Residuals vs Hits <u>after</u> alignment

- Planes 5y, 6x, 10x have noisy behaviors; planes 7y has some edge problem. Part of these can be solved with quality cuts (next slides).
- These plots show it is possible to correct rotations along z axis within 0.001 mrad.

Fiducial cut on 3y (1): solving problems on y

intrinsic limit value.

Fiducial cut on 3y (2)

Decoupling the two hits groups (1°-3° / 2° ASIC of 3y), they seem to align themselves: the best group (1°-3° ASIC) achieves a good alignment; for the other one, the distribution seems centered, but the sigma is too high.
At first sight, it looks like weird: if we use only "good" hits for alignment, we must check that final alignment

coefficients work well also for the hits group in the middle (not used to extract these coefficients).

Muon deflection distributions on target 1/2, AFTER alignment

(Hits10x-Hits8x)/45.43-(Hits6x-Hits4x)/50.)*1.e3 (Hits9y-Hits7y)/44.6-(Hits5y-Hits3y)/50.)*1.e3 h Dx Entries 400269 22000 Out-In from hits x Mean -0.001853 RMS 0.1905 20000 Out-In from hits y χ^2 / ndf 70.19/17 18000 Constant 2.223e+04 ± 5.355e+01 NO CUT -0.0006175 ± 0.0003291 Mean 16000 Sigma 0.137 ± 0.000 h Dv 14000 Entries 400269 target1 12000 -0.0358 Mean RMS 0.211 10000 χ^2 / ndf 230.5 / 17 Constant 2.23e+04 ± 5.43e+01 8000 $-0.01551 {\pm}\ 0.00031$ Mean Sigma 0.1294 ± 0.0004 6000 4000 2000 -2 _1 0 thetaOut-thetaIn T1 (mrad) (Hits15y-Hits13y)/49.34-(Hits9y-Hits7y)/44.6)*1.e3 h DyT2 30000 Entries 400269 0.003031 Mean RMS Out-In from hits y 0.1827 25000 χ^2 / ndf 174.6/17 **NO CUT** Constant 2.923e+04 ± 6.564e+01 -0.002589 ± 0.000194 Mean 20000 Sigma 0.1007 ± 0.0002 15000 target2 10000 5000 0_<u>3</u> -2 0 -1 2 thetaOut-thetaIn T2 (mrad)

- Beyond roughly angle definitions, all these distributions look like too wider (for 180-190 GeV muon) and their sigmas are not compatible, in particular the y one shows some problems: although Dx (for T1) and Dy (for T2) have acceptable offsets, within few urad, these plots clearly show the data need more work.
- Plane 5y / 6x / 7y / 10x have something unclear that obviously affects these distributions:
 <u>cutting on Hits3y</u>, angle distributions significantly improve.

Possible directions: check other misalignments?

These hits are now partially(?) aligned: correlations between residuals on some planes (here taking as a reference first planes before T1) and incoming direction (before T1) can show us there are clearly other corrections to apply. These behaviors, in particular <u>positive -> negative</u> correlations, suggest there may be problems along z axis, for example related to the <u>tilt along x and y axis</u>, declared in the provided diagrams. They particularly afflict planes in box2 and box3.

Remarks

- Some silicon sensors have **counting problems** probably due to high beam intensity.
- To recover efficiency (lost in these planes), we will use the other ones, up and downstream: in particular another box has been added to recover 3y.
- An alignment procedure, like that of previous test beam, was performed with good results, for all x/y planes: residual means below 1 um and rotation along z axis within 0.001 mrad seem possible to achieve with a correct alignment.
- Residual distributions from data are compatible with declared intrinsic resolution of AGILE trackers.
- Some unclear points remain, in particular on quality cuts to choose events for alignment; also the questions concerning sensor rotations along x and y axis.
- Once alignment procedure has been established, it will be necessary to figure out how to correctly handle the stereo u/v planes.