First checks on quality and alignment: test beam 2018 (first run 300118)
v. 1 (1° meeting 15/6/2018)

A. Principe

Apparatus TB 2018: AGILE + MUonE

Preliminary simulation of muons behind COMPASS

3 beam conditions (with different beam profiles in energy / angular spread):

- muons from modified M2 (two weeks in April);
- muons from nominal M2;
- muons from pi decays.

We must link these conditions to each of our runs.
$190 \mathrm{GeV} / \mathrm{c} \mu$-beam at the MuonE test-setup position: Y vs X and $\mathrm{P} \mu$

M2 beam

$\sigma x=93.4 \mathrm{~mm} ; \sigma y=99.8 \mathrm{~mm}$ Flux for 10^{13} pot/spill $\sim 10^{6} / \mathrm{cm}^{2}$ Note: Change of scale

Deflection of beam downstream (due to SM1 and SM2) ~ 30 cm from undeflected beam axis

One of the first nice results of our preliminary analysis: mysterious circles on hits patterns? No, muon radiography of COMPASS TPC!

First setup, without box $8(1 y-2 x)$ before 7

muONe installation - 09/04 setup *from Mattia Soldani

Un-aligned hits (in cm)

SingleTrack: $m=1$ on all planes.

Hits3y have some counting problems (middle ASIC), even not selecting conditions: this inefficiency pattern propagates itself at the all y planes, if singletrack is required.

Hits $4 \mathbf{x}$ doesn't have problems, but requiring singletrack it acquires pattern of plane 10x: see next slide.

stereo u plane: $+45^{\circ}$ (see next slide).
hits13y: as for the other planes, some strips may be inefficient or dead.

stereo v plane: -45° (see next slide).

Pattern of $15 y$ and $16 x$ (last planes) are shifted on the sensors edges: see slide 8.

Inefficiency patterns

- SingleTrack condition correlates all plane x / y : 3y and $10 x$ transmit their patterns to the other ones.

Planes shift along \mathbf{z} axis

- It seems that efficiency patterns (due to 10x for x hits and to 3y for y) shift proportional to the distances of first reference plane. These hits are un-aligned, but it can be a sign that apparatus is off-axis with respect to the beam or last planes (taken as a reference) are particularly shifted respect to the others.
- Roughly speaking, in x there may be an angle offset of $+1.8 \mathrm{~cm} / 196.30 \mathrm{~cm}$ (total x arm) $=+9.2 \mathrm{mrad}$;
- in $\mathrm{y}:-1.0 \mathrm{~cm} / 199.6 \mathrm{~cm}$ (total y arm) $=-5.0$ mrad. These offset should be observe after alignment taking $4 \mathrm{x}-16 \mathrm{x}$ and $3 y-15 y$ as a references (see slide 11).

Trackers alignment

Alignment procedure:

- transverse x / y shift correction using residuals means;
- rotations about the z-axis using correlations between residuals along x (or y) coordinate and hits in the y (or x) direction.

Possible transformations, along all 3 axis:

- 3 translations
- 3 rotations

Reading the distances scheme, some boxes are affect of all these transformations except translations along z respect to the nominal distances (we hope so).

Selecting singletrack, I tried to correct only rotations about z-axis and transverse translations along x and y using an iterative code (like the one used for the previous test beam):
$\mathbf{x}^{\prime}=\mathbf{x}-$ s_resx $^{-}$s_anglex ${ }^{\star} \mathbf{y}$
$\mathbf{y}^{\prime}=\mathbf{y}-$ s_res $^{\prime}-$ s_angley $^{*} \mathbf{x}$
(s_res: sum shifts after n iterations, s_angle: sum angle corrections after n iterations.)

Alignment strategy

muONe installation - 09/04 setup

- Y reference planes: $3 \mathrm{y}-15 \mathrm{y}$.
- X reference planes: 4x-16x.
- Checking residuals on the other ones and correlations between residuals and hits.
- Also checking possible correlations between some residuals and income direction to looking for possible problems in the z direction.

Hits post alignment

- Patterns shift proportional to z distances, these behaviors are confirmed even after alignment: taking as reference first and last boxes, muon beam should have an angle, compared to the apparatus, of roughly +9.2 mrad in x and -5.0 mrad in y.
- This observation is found in the incoming angle distribution:

Residuals before alignment

- Skipping the stereo planes, which will require a special treatment, all x/y translations are within 5 mm .
- In these plot, residuals of uv planes are determined with the reference straight line rotated of $+/-45^{\circ}$.

Residuals vs Hits before alignment

Residuals vs Hits before alignment

- All x/y rotations (along z axis) are within 5 mrad: plane $13 y$ is the one with the highest corrections.
- uv planes confirm their angles: roughly $+45^{\circ}$ for $11 u,-45^{\circ}$ for 14 v .

Intrinsic resolution: residuals analysis

- From residual distributions can be disentangled multiple scattering effect and point silicon resolution: in this case, as a first approximation (->180-190 GeV muons), residuals sigma can be considered the intrinsic resolution of silicon trackers.

- A position resolution of roughly 37-47 micron is indicated as a reference in (1).
- AGILE readout strip pitch: 242 um with "floating strip" (2).
- So geometrical tracker resolution is: 242/2 / sqrt(12) = $\mathbf{3 4 . 9}$ micron.
- Residual sigmas from our high energy muon data confirm these numbers and also show us that maybe from the "residuals point of view" we can't do anything much better.
(1) https://www.Inf.infn.it/acceleratori/public/BTF user/AGILE/nima490agile.pdf
(2) https://www.Inf.infn.it/acceleratori/public/BTF user/AGILE/nima501agile.pdf

Fiducial cut on $3 y$ (1): solving problems on y

cut on 3y:

1.2<Hits3y<3 II 6.6<Hits3y<8.4

- Selecting only hits on first and third ASIC (of $3 y$), residual on plane 5 y considerably improves: it becomes gaussian like the others and its sigma becomes comparable with the intrinsic limit value.
selecting only singletrack

Fiducial cut on 3y (2)

- Decoupling the two hits groups ($1^{\circ}-3^{\circ} / 2^{\circ}$ ASIC of 3y), they seem to align themselves: the best group $\left(1^{\circ}-3^{\circ}\right.$ ASIC) achieves a good alignment; for the other one, the distribution seems centered, but the sigma is too high.
- At first sight, it looks like weird: if we use only "good" hits for alignment, we must check that final alignment coefficients work well also for the hits group in the middle (not used to extract these coefficients).
- Also on the other y planes there are same quality problems, but less pronounced.

Muon deflection distributions on target 1/2, AFTER alignment

(Hits10x-Hits8x)/45.43-(Hits6x-Hits4x)/50.)*1.e3
(Hits9y-Hits7y)/44.6-(Hits5y-Hits3y)/50.)*1.e3

(Hits15y-Hits13y)/49.34-(Hits9y-Hits7y)/44.6)*1.e3

- Beyond roughly angle definitions, all these distributions look like too wider (for 180-190 GeV muon) and their sigmas are not compatible, in particular the y one shows some problems: although Dx (for T1) and Dy (for T2) have acceptable offsets, within few urad, these plots clearly show the data need more work.
- Plane 5y / 6x / 7y / 10x have something unclear that obviously affects these distributions: cutting on Hits3y, angle distributions significantly improve.

Possible directions: check other misalignments?

- These hits are now partially(?) aligned: correlations between residuals on some planes (here taking as a reference first planes before T1) and incoming direction (before T1) can show us there are clearly other corrections to apply. These behaviors, in particular positive $->$ negative correlations, suggest there may be problems along z axis, for example related to the tilt along x and y axis, declared in the provided diagrams. They particularly afflict planes in box2 and box3.

Remarks

- Some silicon sensors have counting problems probably due to high beam intensity.
- To recover efficiency (lost in these planes), we will use the other ones, up and downstream: in particular another box has been added to recover $3 y$.
- An alignment procedure, like that of previous test beam, was performed with good results, for all x / y planes: residual means below $\mathbf{1} \mathbf{u m}$ and rotation along z axis within $\mathbf{0 . 0 0 1} \mathbf{~ m r a d ~ s e e m ~ p o s s i b l e ~ t o ~ a c h i e v e ~}$ with a correct alignment.
- Residual distributions from data are compatible with declared intrinsic resolution of AGILE trackers.
- Some unclear points remain, in particular on quality cuts to choose events for alignment; also the questions concerning sensor rotations along x and y axis.
- Once alignment procedure has been established, it will be necessary to figure out how to correctly handle the stereo u/v planes.

