

IDEA: Vertical Slice Test

Romualdo Santoro

IDEA Test Beam

Measurements:

- Particle Identification with:
 - Drift Chamber Prototype (p, π , k) using dE/dx VS cluster counting
 - Preshower + Dual Readout Calorimeters (e, π, μ)
 - μRWell (e, μ)
- Preshower optimization studies
- Tracking qualification
- Small calorimeter module with SiPM readout qualification
- RD52 calorimeter with longitudinally displaced fibers qualification

Beam Requirements:

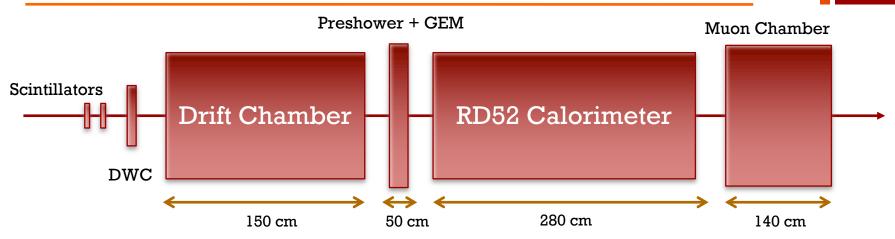
- 6, 10, 20, 40, 60 GeV hadrons (both positive and negative)
- 10, 20, 40, 60 GeV electron
- 20, 100 GeV muons
- Beam pipe close to the experimental area (no parasitic upstream of our setup)

Control room: HNA – 468 (0887-1- Q70)

Old picture: our life could be much more difficult!

RD52 calorimeter (already installed in the area)

Some space in front of the calorimeter for the preshower


Place for the drift chamber ($\approx 2m$)

Trigger + Delay Wire Chamber (DWC) already installed

Space for electronics, services laptop for slow control and DaQ will be verified during the survey (27-June)

3

Setup schema

- Trigger with 2 scintillators in coincidence + 1 veto (if needed)
- 2 DWC (Delayed Wire Chamber)
- CEDAR (Differential Cherenkov detector)
- Drift Chamber Prototype
- Preshower with GEM
- Few different Dual Readout prototypes
 - RD52 calorimeter with PMT readout
 - RD52 calorimeter with longitudinally displaced fibers
 - Small calorimeter module with SiPM readout

Muon chamber with µRWell

Trigger

Detector (ok)

- 2 Scintillators + PMTs installed in the area (ok)
- Veto: 1 scintillator with an hole 1cm diameter + PMT installed in the area (ok)
- Electronics (ok)
 - Trigger prepared with NIM modules in counting room.
 - Expected delay for the trigger is 200 ns (logic + cables)
- Services (ok)
 - Cable available

DWC: Delayed Wire Chamber

- Detector
 - Installed in the area (to be checked if still working)
- Electronics (ok)
- Services (ok)
- DaQ
 - In counting room integrated with the Calorimeter DaQ

Detector

- Detector from SPS
- Electronics (ok)
- Services (ok)
- DaQ / Trigger (?)
 - Probably we can consider no to use them in the trigger
 - Readout already integrated with the Calorimeter DaQ

Drift Chamber (I)

- Detector
 - 12 layers X 12 cells = 144 channels
 - 1x1 cm² drift cells instrumented with MEG2 front-end
 - DRS4 8 channels
 - LeCroy 12-bit ADC 16 channels (under discussion)
 - 96 channels readout with Discriminator + TDC
 - 24 channel: not equipped
- Gianfranco is investigating the possibility to avoid the use of the LeCroy: low event rate (10 Hz)
- Two options under investigation (to be clarified soon):
 - I6 Channels readout by DRS4 (windows OS): is it integrated? What it the event rate?
 - I6 channels readout with the MEG dedicated board: is it available? Is it integrated?

Drift Chamber (II)

Power supply

- Mainframe 1527 (Counting room): OK
 - Power supply board (2 slots) from Lecce: OK
- Crate VME (Exp Area): To be rent and to be installed
- Crate CAMAC (Exp. Area): will be transported from Lecce OK
- Crate NIM (Exp Area): ??

Services

- Long cable from power supply in counting room to the detector: OK
- GAS:
 - l or 2 refill: He (to be rent)
 - l or 2 refill Isobutano (to be rent) ???
 - Some discussion is on-going with the expert (Ginafranco silvia)
 - Rilsan tubes ???
- DaQ
 - Desktop (Exp. Area): transported from Lecce
- Trigger
 - Latency (ok)
 - Busy propagation (ok)
 - Trigger counting (to be verified)
 - Trigger rate: still under discussion

Drift Chamber: Measurements

- The program is still under discussion and it will be strongly affected by the chamber event rate
- This is the request:
 - Goal: Pion / kaon separation at different energies
 - External detector for particle ID (CEDAR)
 - Beam Energies: 6, 10, 20, 40, 50, 60, 100
 - 10k events per particle type and energy
- Measurement with 2 gas mix for 2 energies
- High Voltage scan for one energy

Preshower and muon chamber (I)

Geometry

- Preshower: (detector + support) 35 x 50 x 50 cm³ (xyz)
- Muon chamber: (detector + support) 35 x 50 x 100 cm³ (xyz)
- Detector
 - Preshower
 - 2 layers of Gem (2 points xy)
 - Different absorber layers (0 2 X0) (4 points?)
 - Detector planes 10 x 10 cm²
 - Muon chamber
 - 2 layers of Gem (2 points xy)
 - 2 layers of muR-Well (2 points xy)
- Electronics
 - SRS system (ok) + SRU module (delivered soon)

Preshower and muon chamber (I)

Services

- 1 fill ArCO₂ (70/30)
- Pipes to be verified by expert
- l Crate high voltage (Sy1527?) from Ferrara (exp. area)
- High voltage module from Ferrara (exp. area)

DaQ

- System in the experimental area
- Remote control from counting room

Trigger

- Latency (ok)
- Busy propagation (it should be ok... under test)
- Trigger counting (ok)
- Rate 1 kHz

Measurements

- No request for a dedicated program to characterize the detector
- Space point will be provided for the others detectors

RD-52 Calorimeter

Detector

- 9 modules, 4 tower each
 - 36 PMT (Cherenkov light)
 - 36 PMT (scintillating light)
- Electronics
 - $\blacksquare \quad VME \rightarrow 2 + 1/4 \ V792AC \ 32 \text{-channel QDC}$
- Services
 - 6 x 12-channel A1832N (Sy1527)
- DaQ
 - Control room

Ancillaries

- 2x DWC, 1 PS, 1 Muon Counter
- VME \rightarrow V775N 16-ch TDC, V862 32-ch QDC
- few ch. A1832P (DWC) + few ch. A1832N (PS+MuC)
- DAQ running in control room

RD-52 module with displaced fibers

- 8+8 PMT
- VME $\rightarrow \frac{1}{2}$ V792AC (32-ch QDC)
- 2 x A1832N
- DAQ running in control room

SiPM equipped module

- Detector geometry
 - Mecanics: 30 x 30 x 150 cm³ (xyz)
 - Detector: 1 x 1 x 110 cm³
- Electronics (exp area)
 - Readout: 2 mada boards (from Como)
 - Desktop power supply (from Como)
- Services
 - Cabling (ok)
- DaQ
 - Laptop installed in the exp area (+ remote desktop)

Trigger

- Latency (ok)
- Busy propagation (??)
- Trigger counting (ok)
- Rate 1 kHz

Quasi on-line tool

- Tom has started to collect exemplary data collected in previous test beam by each subsystem. This is a starting point for the integration
- A working repository for the tesbteam-specific modules for DQM4HEP is available on Github: <u>https://github.com/tcoates3/dqm4hep-dream</u>