Multi-messenger astrophysics with the Pierre Auger Observatory

João de Mello Neto^a for the Pierre Auger Collaboration^b ^a Federal University of Rio de Janeiro - Brazil ^b Observatorio Pierre Auger, Malargüe, Argentina

GEMMA

Gravitational-waves, ElectroMagnetic and dark_MAtter Lecce, 4-7 June 2018

Outline

- ***** Introduction
- ***** The Pierre Auger Observatory
- ***** Search for photons
- ***** Search for neutrinos
- ★ GW follow-ups
- ***** Observatory upgrade
- ***** Conclusions

Pierre Auger Observatory: nuclei, photons and neutrinos

The Pierre Auger Observatory

The Pierre Auger Observatory

Two independent and complementary detector systems

Fluorescence Detector (FD)

24 telescopes in four buildings FoV: 1°-30° in elevation 3 High Elevation Auger Telescopes (HEAT) FoV: 30°-60° in elevation

~13% duty cycle

longitudinal profile

Surface detector (SD)

1660 water cerenkov detec. (WCD) in 3000 km²

1.5 km spacing

Denser array, 750 m

100% duty cycle

particle density at ground

Hybrid events: at least one WCD + FD AERA 124 antennas in 6 km² Underground muon detectors Atmospheric monitoring stations Auger: data since 2004, completed in 2008

SD * signal at 1000 m, S₁₀₀₀ energy estimator * energy calibration from FD in hybrid events

Quadruple hybrid event

The search for primary photons

Photon showers x hadronic showers

Identification of photon showers

- * UHE photon showers develop deeper in the atmosphere than showers of same energy induced by hadrons (smaller multiplicity of electromagnetic interactions) Xmax
- * Photon showers smaller footprint on ground (smaller number of triggered stations) Nstat
- *** Steeper** lateral distribution function

Detailed MC simulations 10¹⁷ and 10¹⁹ eV

$$S_{b} = \sum_{i}^{N_{\text{stat}}} S_{i} \left(\frac{r}{r_{0}}\right)^{b}$$

Background rejection and signal efficiency

Different algorithms and combinations of input variables

Boosted decision tree and Fisher multivariate analysis

- ***** Energy and zenith angle are included in the BDT
- * background contamination 0.14% for a photon selection efficiency of 50%

BDT photon selection

* Three events pass the cut, with 11.4 (3.3) expected for pure-proton (mixed) backg.

* Candidates compatible with background expectations, upper limits on the integral photon flux at 95% C.L. are derived.

upper limits on photon flux

$$\Phi_{UL}^{0.95}(E_{\gamma} > E_{0}) = \frac{N_{\gamma}^{0.95}(E_{\gamma} > E_{0})}{-}$$

- ★ Number of candidates at 95% CL
- * Integrated exposure assuming a power law spectrum

- **Tight constraints on current top-down scenarios to explain the origin of UHE CR**
- Sensitivity to photon fractions of about 0.1% for 1 EeV \star
- Exploring the region of photon fluxes predicted in astrophysical scenarios

Niechciol, for the Pierre Auger Colab., ICRC 2017

Photon flux from Galactic center

- ***** HESS collaboration: acceleration of TeV protons in the GC
- ***** Extrapolation to EeV takes into account interactions with CMB
- ***** Power law with exponential cuttof: upper limit on the cutoff energy of 2 EeV
- ***** The connection to measurements from the TeV range enables new multi-messenger studies

The HESS Collab. Nature, 2016

The search for neutrinos

Neutrino search: old and young showers

Sensitivity: all flavours and channels

Three selection criteria

- ***** Downward-going low zenith (2 and 4)
- * Downward-going high zenith (2, 4 and 5)
- ***** Earth-skimming (3)

Selecting v in data

 $75^{0}-90^{0}$)

Pierre Auger Coll., Phys. Rev. D 91, 092008 (2015); Ap JL 755:L4 (2012)16

v search: ES Earth skimming

Zas, for the Pierre Auger Collab., ICRC2017

Exposure 01 Jan 2004 - 31 Mar 2017

Earth-skimming neutrinos dominate the exposure in spite of the reduced solid angle to which the detector is sensitive to them

v limits

Expected events: 01 Jan 04 - 31 Mar 17

Diffuse flux neutrino model	Expected events			
	(1 Jan 04 - 31 Mar 17)			
Cosmogenic - proton - strong source evolution	n			
Cosmogenic - proton, FRII evol. (Kampert 2012)	~ 5.2			
Cosmogenic - proton, FRII evol. (Kotera 2010)	~ 9.2			
Cosmogenic - proton - moderate source evoluti	on			
Cosmogenic - proton, SFR evol (Aloisio 2015)	~ 2.0			
Cosmogenic - proton, SFR evol, $E_{\text{max}} = 10^{21} \text{ eV}$ (Kotera 2010)	~ 1.8			
Cosmogenic - proton, SFR evol. (Kampert 2012)	~ 1.2			
Cosmogenic - proton, GRB evol. (Kotera 2010)	~ 1.5			
Cosmogenic - proton - normalized to Fermi-LAT GeV γ -rays				
Cosmogenic - proton, Fermi-LAT, $E_{\min} = 10^{19} \text{ eV}$ (Ahlers 2010) ~ ~ 4.0				
Cosmogenic - proton, Fermi-LAT, $E_{\min} = 10^{17.5}$ eV (Ahlers 2010)	~ 2.1			
Cosmogenic - mixed and iron				
Cosmogenic - mixed (Galactic) UHECR composition (Kotera 2010)	~ 0.7			
Cosmogenic - iron, FRII (Kampert 2012)	~ 0.35			
Astrophysical sources				
Astrophysical - radio-loud AGN (Murase 2014)	~ 2.6			
Astrophysical - Pulsars - SFR evol. (Fang 2014)	~ 1.3			

EXCLUDED (> 90% CL), DISFAVORED (85% < CL < 90%), ALLOWED

Zas, for the Pierre Auger Collab., ICRC2017

The follow-up of GW events

Binary-BH mergers and neutrinos

- * LIGO GW150914, GW151226, GW170104 (& LVT151012)
- * Fermi GBM: transient source above 50 keV 0.4s after GW150914
- ***** possible association with a short gamma-ray burst

Mergers of BH are a potential environment where UHE cosmic rays can be accelerated

★ UHECR accelerated by Fermi mechanism in presence of relic B-fields and debris from BH → formation of BHs could imply emission of UHE v's and γ 's

K. Kotera, J. Silk, ApJL 823, L29 (2016)

★ If accretion disk present, UHECR can be accelerated by electric fields in disk dynamo
 → UHE v's from interaction with photon backgrounds and gas around BH

L. Anchordoqui, Phys. Rev. D 94, 023010, 2016

v in coincidence with BH mergers ?

Energy range: E > 100 PeV, complementary to IceCube-Antares follow up

LIGO&VIRGO, Icecube, ANTARES coll. PRD 93, 122010 (2016)

Auger Earth-Skimming and Downward-going neutrino selection to data in spatial and temporal proximity to GW150914, GW151226 (and LVT151012):

Two search periods (motivated by the association of mergers of compact systems and GRBs

+/- 500 s around each GW event

- ***** to an upper limit on the duration of the prompt phase of the GRBs
- PeV neutrinos are thought to be produced in interactions of accelerated cosmic rays and the gamma rays with the GRB itself

One day after the event

- ***** Conservative upper limit on the duration of GRB afterglows
- ★ UHE neutrinos may be produced in interactions of UHECRs with the lowerenergy photons of the GRB afterglow

Same identification criteria to neutrinos as discussed previously

Instantaneous field of view

Auger Latitude: $\lambda = -35.2^{\circ}$

- Auger sensitivity limited to large zenith angles : at each instant in time neutrinos can be detected efficiently only from a specific portion of sky.
- ***** Instantaneous field of view of the SD array is limited
- * Covered region has very good sensitivity to earth-skimming tau neutrinos

No candidate was detected in the window of ± 500 s around the GRB event

Visibility time fraction in one sidereal day

Pierre Auger Coll., Phys. Rev. D 94, 122007 (2016) 25

Constraints on energy radiated from GW151226 in UHE v (E_v > 0.1 EeV)

Pierre Auger Coll., Phys. Rev. D 94, 122007 (2016)

44.1% of E_{GW}

A binary neutron star merger

- * GW170817: a NS-NS merger seen in gravitational waves
- * GRB170817A: confirmed as short GRB (Fermi GBM, Integral)
- ***** UV, optical and IR observation located the merger in NGC 4993
- * Fermi LAT, H.E.S.S., HAWC observe region later

ν in coincidence with GW170817

- ***** v follow up: Antares, IceCube and Pierre Auger Observatory
- * At time of GW trigger: event in region of maximum sensitivity for Auger

ANTARES, IceCube and the Pierre Auger Observatory, AJL, 2017

GW170817 v limits

- * Time windows: ±500 s, 14-days
- ***** No neutrino candidate found
- ***** Only optimistic model constraint by observations
- ***** Consistent with model predictions of short GRB observed off-axis and low luminosity GRB
- ***** Complementary searches
- ***** An unprecedented joint effort of experiments sensitive to highenergy neutrino

GW170817 Neutrino limits (fluence per flavor: $\nu_x + \overline{\nu}_x$)

ANTARES, IceCube and the Pierre Auger Observatory, AJL, 2017 29

The Pierre Auger Observatory upgrade

The Pierre Auger Observatory Upgrade

Increased composition with SD!

A new detector is needed

- * add a thin scintillator on top of each WCD to enhance em/muon separation
- New electronics (120 MHz, three times the current rate)

2016: Engineering Array 2018-2019: deployment of 1200 SSD 2019-2025: data taking (almost double exposure)

Pierre Auger Collaboration, arXiv:1604.03637

LDF of Ev.163076179300

WCD and SSD data

 Lateral distribution function determination composition-ermanced amsotropy studies
 particle physics with air showers

Martello, for the Pierre Auge Collab., ICRC 2017

Conclusions

Photons

- ★ No photons with EeV energies detected so far
- Search for a diffuse flux of photons: upper limits impose severe constraints on nonacceleration models for the origin of UHECRs and the predictions from some GZKbased models are within reach
- * Targeted search: no evidence for EeV photon emitters and the connection with the TeV energy regime enables new multi-messenger studies

Neutrinos

- ***** No neutrino found
- ***** UHE neutrinos easy to identify: inclined showers with broad time fronts
- ***** Search not limited by background but by exposure
- ***** Sensitivity peaks at ~ EeV (peak of cosmogenic neutrinos)
- ***** Diffuse bounds constrain UHE neutrinos models

Follow-up of Gravitational-Wave events:

- ★ Upper limits on UHE neutrinos in correlation with LIGO GW 2015 events: First limits above 10¹⁷ eV (complementary to IceCube limits)
- ***** GW170817: upper limits with Antares and IceCube
- ***** Active role in multimessenger era!

Backup slides

Neutrinos

Hybrid energy calibration

v search: DGH 75° < θ < 90° No v candidates

Limits to point sources of UHE $\boldsymbol{\nu}$

- * assuming a single flavor point-like flux of UHE neutrinos $dN/dE = k^{PS} E_{2}^{-2}$
- ***** note the different energy ranges

Proton dominated sources

 * Above white line: excluded at 90% by Auger 2016 (8.4 yrs of full Auger)

v search: inclined and young showers

Selection	Earth-skimming (ES)	Downward-going high angle (DGH)	Downward-going <i>low</i> angle (DGL)
Flavours and interactions Angular range N° of stations (N_{st})	$\nu_{\tau} CC$ $\theta > 90^{\circ}$ $N_{st} \ge 3$	$\nu_e, \nu_\mu, \nu_\tau \text{ CC \& NC} \\ \theta \in (75^\circ, 90^\circ) \\ N_{\text{st}} \ge 4$	$\nu_{e}, \nu_{\mu}, \nu_{\tau} \text{ CC \& NC}$ $\theta \in (60^{\circ}, 75^{\circ})$ $N_{\text{st}} \ge 4$
Inclined showers	L/W > 5 $\langle V \rangle \in (0.29, 0.31) \text{ m ns}^{-1}$ $\mathrm{rms}(V) < 0.08 \text{ m ns}^{-1}$	$ heta_{ m rec} > 75^{\circ}$ L/W > 3 $\langle V \rangle < 0.313 \ {\rm m} {\rm ns}^{-1}$ ${ m rms}(V)/\langle V \rangle < 0.08$	$\theta_{\rm rec} \in (58.5^\circ, 76.5^\circ)$
Young showers	Data: 1 January 2004–31 May 2010 $\geq 60\%$ of stations with ToT trigger and AoP > 1.4 Data: 1 June 2010–20 June 2013 $\langle AoP \rangle > 1.83$ $AoP_{min} > 1.4$ if $N_{st} = 3$	Fisher discriminant based on AoP of <i>early</i> stations	 ≥ 75% of stations close to shower core with ToT trigger and Fisher discriminant based on AoP of <i>early</i> stations close to shower core

TABLE I. Observables and numerical values of cuts applied to select *inclined* and *young* showers for Earth-skimming and downward-going neutrinos. See text for explanation.

Phys. Rev. D 91, 092008 (2015)

Systematic uncertainties

Source of systematic	Combined uncertainty band
Simulations	~ +4%, -3%
ν cross section and τ E-loss	~ +34%, -28%
Topography	~+15%, 0%
Total	~ +37%, -28%

Auger highlights

Magnetic monopoles

Cross Section

AAAS

harmonic analysis in right ascension α (exposure symmetrical):

Energy (EeV)	Number of events	Fourier coefficient a_{α}	Fourier coefficient b_{α}	Amplitude r_{α}	Phase φ _α (°)	Probability P ($\geq r_{\alpha}$)
4 to 8	81,701	0.001 ± 0.005	0.005 ± 0.005	0.005 +0.006 -0.002	80 ± 60	0.60
≥8	32,187	-0.008 ± 0.008	0.046 ± 0.008	0.047 +0.008 -0.007	100 ± 10	2.6×10^{-8}

modulation significance 5.3σ (5.6 σ before penalization)

Large-scale Anisotropy

-90

Energy (EeV)	Dipole component d _z	Dipole component d ₁	Dipole amplitude <i>d</i>	Dipole declination δ_d (°)	Dipole right ascension α_d (°)
4 to 8	-0.024 ± 0.009	$0.006\substack{+0.007\\-0.003}$	$0.025\substack{+0.010\\-0.007}$	-75^{+17}_{-8}	80 ± 60
≥8	-0.026 ± 0.015	$0.060\substack{+0.011\\-0.010}$	$0.065\substack{+0.013\\-0.009}$	-24_{-13}^{+12}	100 ± 10

galactic coordinates (*l*, *b*) = (233°, -13°)

Large-scale Anisotropy

Radio array: energy determination

Energy fluence for an extensive air shower with an energy of 4.4 x 10¹⁷ eV and a zenith angle of 25 measured with AERA (colored circles). The center indicates the shower core reconstructed with the radio data. The colored background indicates the two-dimensional LDF fit. The white star marksthe shower core reconstructed using the surface detector data of the Pierre Auger Observatory

The corrected radiation energy in relation to the cosmic-ray energy measured with the baseline detectors of the Pierre Auger Observatory.