Recent results on Dark Matter searches with the IceCube neutrino telescope

Carlos de los Heros Uppsala University

the IceCube Neutrino Observatory

neutrino signatures

- ullet Muon tracks (CC u_{μ})
- \bullet Resolution $< 1^{\circ}$
- Large energy uncertainties

- Resolution $\approx 15^{\circ} 20^{\circ}$
- Energy resolution $\delta E/E \approx 15\%$

- High energy v_{τ} (>100 TeV)
- Not observed yet

amount of light in detector $\propto \nu$ energy

Atmospheric

Astrophysical

GZK vs

Produced in cosmic-ray air showers

Galactic and extra-Galactic sources

CRs on CMB photons

neutrino telescopes are subject to a high statistics (~100.000 /y km³), high-energy neutrino beam from the atmosphere

plus...

an even higher-energy astrophysical flux (~100 /y km³)

These are irreducible backgrounds for DM searches

background rejection

Southern Sky dominated by atmospheric muons

above horizon (Southern sky)

below horizon (Nothern sky)

use Earth as a filter to reject atmospheric muons from Northern Sky

use outer layers as a veto to select neutrino-induced starting events

detector becomes 4π , sensitive to Galactic Center and Southern sky

evidence for dark matter

dark matter searches with neutrino telescopes

searches dark matter: what can be measured?

dwarf galaxies
 &
distant galaxies

Galactic Halo

Galactic Center

$$\Phi_{\mathbf{v}} \rightarrow \Gamma_{A} \rightarrow C_{C} \rightarrow \sigma_{\chi p}$$

probe spin-dependent and spin-independent DM-nucleon cross section, $\sigma^{\rm SD}_{\rm \chi-N}$ $\sigma^{\rm SI}_{\rm \chi-N}$

- complementary to direct detection
- different astrophysical systematic uncertainties

$$\Phi_{\mathbf{v}} \rightarrow \Gamma_{A} \rightarrow \sigma_{\chi\chi}$$

probe velocity-averaged DM annihilation cross secton $<\sigma_{Ann} v>$

- complementary to searches with other messengers (γ, CRs...)
- shared astrophysical systematic uncertainties (halo profiles...)
- more background-free

external inputs in the calculations

The prediction of a neutrino signal from dark matter annihilation is complex and involves many subjects of physics

- relic density calculations (cosmology)
- dark matter distribution in the halo (astrophysics)
- velocity distribution of the dark matter in the halo (astrophysics)
- physical properties of the dark matter candidate (particle physics)
- interaction of the dark matter candidate with normal matter (for capture)

(nuclear physics/particle physics)

- self interactions of the dark matter particles (annihilation) (particle physics)
- transport of the annihilation products to the detector (astrophysics/particle physics)

searches for dark matter from the Sun

532 d livetime when Sun below horizon

DeepCore lowers energy threshold

Limit driven by capture on p

searches for dark matter from the Earth

- Each string practically an independent detector
- 327 d lifetime
- Background needs to be very well understood:

Earth has an unique position with respect to the detector

- No equilibrium: assumption on the annihilation cross-section
- Limit driven by resonant capture in Earth's elements (mainly spin 0)

searches dark matter: galactic center and halo

$$\frac{d\Phi(\Delta\Omega)}{dE} = \frac{\langle \sigma_A v \rangle}{4\pi \cdot 2m_\chi^2} \frac{dN}{dE} J(\Delta\Omega)$$

- Several analyses by IceCube using tracks and cascades, and high and low energy samples
- Analysis with large uncertainties due to different halo model assumptions (NFW as benchmark)

searches dark matter: neutrino-DM scattering

PRL 119, 201801 (2017)

- Scattering of high energy cosmic neutrinos on DM in the halo can lead to a deficit of high energy neutrinos from the GC
- neutrino-DM interactions mediated by a scalar or vector mediator φ.

- limits on coupling constant, g, possible by measuring the isotropy of the HE neutrino flux

searches dark matter: combining sister experiments

IceCube field of view

ANTARES field of view

searches dark matter: lifetime

- Two independent analyses:
 - 6 years tracks (northern sky)
 - 2 years cascades (all sky)
- Adding limits > 10 TeV

Signal: sum of

DM decays in the Halo:

$$\frac{d\Phi^{Galactic}}{dE_{v}} = \frac{1}{4\pi m_{DM} \tau_{DM}} \frac{dN_{v}}{dE_{v}} \int_{0}^{\infty} \rho(r(s,l,b)) ds$$

DM decays in the Universe:

$$\frac{d\Phi^{Extra-Galactic}}{dE_{v}} = \frac{\Omega_{DM} \rho_{c}}{4 \pi m_{DM} \tau_{DM}} \int_{0}^{\infty} \frac{1}{H(z)} \frac{dN_{v}}{dE_{v}} [(1+z) E_{v}] dz$$

Dark Matter remains one of the major open questions in physics today

Indirect detection with neutrino telescopes provides complementarity to other techniques due to different backgrounds and systematics

A positive signal should be understood under the different messengers

IceCube has a lively program of dark matter searches, with competitive limits on dark matter-nucleon spin-dependent cross section and dark matter lifetime

Rich (astro)particle physics program with IceCube (I focused only on DM). See C. Finley's talk in this workshop for multimessenger astronomy with IceCube