Dark Matter searches
the IceCube neutrino telescope
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the [ceCube Neutrino Observatory

IceCube Laboratory

Data is collected here and
sent by satellite to the data
warehouse at UW-Madison
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Detector Construction

7 seasons of construction, 2004-2011
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28,000 person-days to complete
construction, or 77 years of
continuous work

2.1 million kilograms of cargo
was shipped, 0.5 million of
which was the drill

48 hours to drill and 11 hours to
deploy sensors per hole

4.7 megawatts of drill thermal
power with 760 liters of water
per minute delivered at 88 °C
and 7,600 kilopascals

Detector Design

1 gigaton of instrumented ice

5,160 light sensors, or digital
optical modules (DOM:s), digitize
and time-stamp signals

1 square kilometer surface array,
IceTop, with 324 DOMs

2 nanosecond time resolution

IceCube Lab (ICL) houses data
processing and storage and sends
100 GB of data north by satellite daily



neutrino signatures

Track

@ Muon tracks (CC v,,)
@ Resolution < 1°

@ Large energy uncertainties

Cascade

@ NC or v./v;
@ Resolution ~ 15° — 20°
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DM searches: energy range
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an even higher-energy
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neutrino telescopes are subject to a
high statistics (~100.000 /y km?3), high-energy

L neutrino beam from the atmosphere
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These are irreducible backgrounds for DM searches



background rejection

Southern Sky dominated by
atmospheric muons

trac

Upgoing

Downgoing §
tracks

T (asbm;i horiz:n) use outer layers as a veto to
rn . . .
outhern sky select neutrino-induced starting events

i below horizon
(Nothern sky)

use Earth as a filter to reject
atmospheric muons from Northern Sky detector becomes 4, sensitive
to Galactic Center and Southern sky
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Galactic Center
i Galactic Halo
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searches dark matter: what can be measured?
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Sun

Earth
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dwarf galaxies
&
distant galaxies
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Halo
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Center
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probe spin-dependent and spin-independent

DM-nucleon cross section, OSDX_ GSIX_

N N

« complementary to direct detection

 different astrophysical systematic
uncertainties

(I)V—>FA->0XX

probe velocity-averaged DM annihilation
cross secton <o, v>

« complementary to searches with
other messengers (y, CRs...)

» shared astrophysical systematic
uncertainties (halo profiles...)

* more background-free



external inputs in the calculations

The prediction of a neutrino signal from dark matter annihilation is complex and

involves many subjects of physics

- relic density calculations (cosmology)

- dark matter distribution in the halo (astrophysics)

- velocity distribution of the dark matter in the halo (astrophysics)

- physical properties of the dark matter candidate (particle physics)

- interaction of the dark matter candidate with normal matter (for capture)
(nuclear physics/particle physics)

- self interactions of the dark matter particles (annihilation) (particle physics)

- transport of the annihilation products to the detector (astrophysics/particle physics)



searches for dark matter from the Sun
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searches for dark matter from the Earth
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searches dark matter: galactic center and halo
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- Several analyses by IceCube using
tracks and cascades, and high and low

energy samples

- Analysis with large uncertainties due
to different halo model assumptions
(NFW as benchmark)
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searches dark matter: neutrino-DM scattering
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- Scattering of high energy cosmic neutrinos
on DM in the halo can lead to a deficit of

high energy neutrinos from the GC

- neutrino-DM interactions mediated by

a scalar or vector mediator ¢.

- limits on coupling constant, g, possible by

measuring the isotropy of the HE neutrino flux
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searches dark matter: combining sister experiments
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searches dark matter:

Two independent analyses:
6 years tracks (northern sky)
2 years cascades (all sky)

Adding limits > 10 TeV
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outlook

Dark Matter remains one of the major open questions in physics today

Indirect detection with neutrino telescopes provides complementarity to other

techniques due to different backgrounds and systematics
b A positive signal should be understood under the different messengers

lceCube has a lively program of dark matter searches, with competitive limits

on dark matter-nucleon spin-dependent cross section and dark matter lifetime

Rich (astro)particle physics program with IceCube (I focused only on DM).
See C. Finley's talk in this workshop for multimessenger astronomy with IceCube
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