Valerio Ippolito INFN Sezione di Roma

# HOW WE LOOK FOR DARK MATTER AT THE LHC

part II: gauge bosons and beyond



a talk on behalf of the ATLAS and CMS collaborations

### BORN ON THE FOURTH OF JULY (2012)

Phys.Lett. B716 (2012) 1-29 Phys.Lett. B716 (2012) 30-61  six years ago we discovered a new particle (H) which behaves as the Higgs boson

Dark Matter at the LHC

- spin-0, couplings compatible
   with Standard Model (SM)
   within ~30% precision
- can it tell us something on new physics?
  - could easily show up with
     1% / 0.1% deviations (loops)
  - per-se a motivation to run LHC until ~2038
- could it be a portal to the invisible?
  - the (or, a) scalar boson mediating the standard sector and a dark sector



05/06/2018 Dark Matter at the LHC GEMMA Physics Workshop

#### HIGGS, A TOOL FOR WIMP DISCOVERY?

ullet

decay to heavier WIMPs would be kinematically prohibited

- a light WIMP (< ~62 GeV) could couple directly to H: a new, invisible decay channel
  - compare to SM H->ZZ\*->vvvv (BR ~ 0.1%)
- something you can do only at a collider...

for example, in two-Higgs-doublet-model scenarios

- spin-0 interaction may yield velocity-suppressed directdetection cross-sections (J<sup>P</sup>=0<sup>-</sup>)
- can access a plethora of final states to fully probe scenarios beyond the SM
  - not necessarily limited to low-mass WIMPs
  - \* e.g.: SUSY, Dark Sectors...
- also possible: indirect BR measurement from all other visible decay channels
- different experimental challenges for invisible or visible H decay



| Valerio Ippolito     | 05/06/2018             | Dark Matter at the LHC |
|----------------------|------------------------|------------------------|
| INFN Sezione di Roma | GEMMA Physics Workshop |                        |

# H->INVISIBLE: CROSS-SECTION ISN'T THE FULL STORY

- vector-boson-fusion (VBF) is the both the most challenging and most sensitive production mode
  - missing transverse momentum and forward jets
  - requires excellent calorimetry, extending to the highest-radiation region (close to proton beams)
- associated production comes next
  - missing transverse momentum and leptonic decay of W or Z
  - requires accurate particle reconstruction and identification
- ubiquitous player: missing transverse momentum
  - neutrinos are the obvious background



 $\chi$ 



particles

Dark Matter at the LHC **GEMMA Physics Workshop** 

#### THE INVISIBLE, THROUGH THE VISIBLE

05/06/2018

- at hadron colliders, leptons are an • invaluable resource
  - clean experimental signature
  - we use them to measure SM background processes
    - e.q. W+jets, Z+jets  $\star$
    - WIMP searches use these  $\star$ measurements to infer the Z->vv contamination!

made Higgs discovery and measurements possible!



- ~1% precision achieved for electron/ muon energy resolution
  - extremely precise tracking, calorimetric and muon systems
  - accurate calibration campaigns to correct Monte Carlo simulation (Geant4)
    - use "standard candles" \*



Dark Matter at the LHC **GEMMA Physics Workshop** 

05/06/2018

# JETS, OR THE TOUGH SIDE OF QUANTUM CROMODYNAMICS



jet from a parton



jet from a H or W/Z boson



- ideally, a particle jet is a collection of particle 4-momenta ("constituents") originating from the hadronisation of a parton
  - a few infrared-safe algorithms used to distinguish substructure within the jet
    - e.g. W or Z boson decays vs "background"
- experimental reality is harder
  - what's a "particle"?
    - different strategies at ★ ATLAS and CMS to determine which detector "hits" correspond to what kind of particle
    - event pile-up, the LHC stone guest



![](_page_5_Picture_16.jpeg)

# HOW IT LOOKS: INVISIBLE HIGGS IN VECTOR BOSON FUSION

diagonally; green lines represent charged particle tracks, red (blue) histograms energy deposits in the electromagnetic (hadronic) calorimeter; an arrow indicates the missing transverse momentum direction

proton beam travels

![](_page_6_Picture_3.jpeg)

CMS Experiment at LHC, CERN Data recorded: Tue Aug 16 13:20:56 2016 BST Run/Event: 278923 / 56352147 Lumi section: 66

![](_page_6_Picture_5.jpeg)

05/06/2018 Dark Matter at the LHC **GEMMA Physics Workshop** 

#### **INVISIBLE HIGGS IN VECTOR-BOSON FUSION**

assuming H decays fully into invisible

- signal-to-background ~ 0.5 ullet
- signature: two "forward", collimated jets ulletrecoil against large missing transverse momentum
  - veto events with leptons
- challenging! ullet

or from non-collision background (beam particles interact with LHC beam collimators, producing muons which travel horizontally and look like unbalanced jets...)

search sensitive to  $BR(H \rightarrow inv) \sim 0.20$ 

CMS-PAS-HIG-17-023 JHEP 01 (2016) 172

- trigger: "fake" missing transverse momentum can come from mis-measured jets
- reconstruction: jet and lepton identification
- WIMPs would show up in tails of invariant ulletmass distribution of the 2-jet system
  - more events than expected for  $H \rightarrow ZZ^* \rightarrow 4v$
  - main background is Z(vv)+jets, estimated measuring W and Z+jet processes in control regions with leptons

![](_page_7_Figure_16.jpeg)

![](_page_7_Figure_17.jpeg)

ullet

# **INVISIBLE HIGGS IN ASSOCIATED PRODUCTION**

search sensitive to  $BR(H \rightarrow inv) \sim 0.20$ 

- look for large missing transverse momentum in events with a Z boson
  - clean, resonant signature in electron and muon channels
- a low-statistics channel

with current LHC luminosity, can go as down as 24 GeV in electron/muon p<sub>T</sub>

dominant source of uncertainty, followed by lepton reconstruction

- lepton trigger, based on fast calorimeters / gas detectors + charged particle tracker
- crucial: background modelling in simulation (ZZ→llvv)
- signal would show up in the missing transverse momentum tails
  - a typical feature of WIMP searches at ATLAS & CMS

![](_page_8_Figure_12.jpeg)

<u>Phys.Lett. B776</u> (2018) 318-337 Eur. Phys. J. C 78 (2018) 291

#### **INVISIBLE HIGGS RESULTS**

ATLAS results are based on the 8 TeV dataset (2011-2012)

WIMP

Н

SM

 best 95% CL limits come from VBF channel

Dark Matter at the LHC

- ATLAS:  $BR(H \rightarrow inv) < 0.28$
- CMS: BR(H→inv) < 0.28,</li>
   < 0.24 combining all channels</li>
- competitive with direct detection when re-interpreted in scenarios with fermion or scalar DM
  - contribution to BR from 2WIMP channel proportional to portal coupling
    - use the latter to compute
       WIMP-nucleon crosssections

![](_page_9_Figure_10.jpeg)

10

Dark Matter at the LHC **GEMMA Physics Workshop** 

#### THE INVISIBLE, THROUGH THE VISIBLE

 $\star$ 

05/06/2018

Phys. Rev. Lett. 119, 181804 Phys. Rev. D 96, 112004 JHEP 10 (2017) 180

2HDM-like, e.g. JHEP 06 (2014) 78

O(10x) better than Η→γγ

![](_page_10_Picture_6.jpeg)

algorithms based on energy density ("2prongness"); machine learning promising for exploiting lowlevel observables

- search for visible H decay and **WIMPs** 
  - through heavier states Z' and A
    - a possible source of pseudoscalar interactions!
- $H \rightarrow bb$  most sensitive channel
  - BR~0.60, background from Z+jets, W+jets and ttbar
  - select resonant di-jet mass and look at tails in missing transverse momentum distribution
- crucial: identify jet substructure
  - relies on calorimeter granularity + energy clustering techniques

b b H $\chi$  $\chi$ 

Z' and A mass exclusion contour for a 100 GeV WIMP

![](_page_10_Figure_18.jpeg)

05/06/2018 Dark Matter at the LHC GEMMA Physics Workshop

#### **A PORTAL TO A DARK SECTOR?**

search performed also • for heavier H-like states

- what if H decays to unstable states from a hidden sector?
  - hidden, lightest stable
     particle could explain Dark
     Matter

<u>ATLAS-</u> <u>CONF-2016-042</u>  long-lived particles, which travel undetected for ~meters and then decay into visible particles

dedicated trigger and tracking strategies are essential!

- example: lepton jets starting in the calorimeters or in the muon spectrometer
- a challenge for current detectors

![](_page_11_Figure_11.jpeg)

![](_page_11_Figure_12.jpeg)

![](_page_11_Figure_13.jpeg)

#### AND MANY MORE!

experimental strategies try to cover all possible signatures, as predicted by effective, simplified and UV-complete models

- H decays to WIMPs
- H produced with WIMPs
- H decays to metastable states which produce WIMPs

Dark Matter at the LHC

- metastable states decay to WIMPs
  - we need to test all these!

![](_page_12_Figure_9.jpeg)

![](_page_12_Picture_10.jpeg)

Dark Matter at the LHC

## A PLETHORA OF SEARCHES...

| ATLAS SUSY Searches* - 95% CL Lower Limits ATLAS Preliminary |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                   |                                                                                                                                  |                                                      |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                          |  |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| De                                                           | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $e, \mu, \tau, \gamma$                                                                                                                                            | Jets                                                                                                                             | $E_{\mathrm{T}}^{\mathrm{miss}}$                     | ∫ <i>L dt</i> [fb                                                                   | <sup>1</sup> ] Mass limit                                                                                                                                                                                                                                                                                                                                                                  | $\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reference                                                                                                                                                                |  |  |
| Inclusive Searches                                           | $ \begin{array}{l} \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{X}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{X}_{1}^{0} (\text{compressed}) \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{X}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{X}_{1}^{1} \rightarrow qqW^{\pm}\tilde{X}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell\ell)\tilde{X}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell\ell)\tilde{X}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{X}_{1}^{0} \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{Gravitino LSP} \end{array} $                                                                                                                                                                                                                                                                                                                     | $\begin{matrix} 0 \\ mono-jet \\ 0 \\ 0 \\ ee, \mu\mu \\ 3 e, \mu \\ 0 \\ 1-2 \tau + 0-1 \ell \\ 2 \gamma \\ \gamma \\ 0 \end{matrix}$                            | 2-6 jets<br>1-3 jets<br>2-6 jets<br>2-6 jets<br>2-6 jets<br>2 jets<br>4 jets<br>7-11 jets<br>0-2 jets<br>-<br>2 jets<br>mono-jet | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 36.1<br>36.1<br>36.1<br>14.7<br>36.1<br>36.1<br>3.2<br>36.1<br>36.1<br>36.1<br>20.3 |                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{ccc} \textbf{1.57 TeV} & m(\tilde{\chi}_1^0) < 200 \ \text{GeV}, \ m(1^{st} \ \text{gen}, \tilde{q}) = m(2^{nd} \ \text{gen}, \tilde{q}) \\ & m(\tilde{q}) - m(\tilde{\chi}_1^0) < 5 \ \text{GeV} \\ \textbf{2.02 TeV} & m(\tilde{\chi}_1^0) < 200 \ \text{GeV} \\ \textbf{2.01 TeV} & m(\tilde{\chi}_1^0) < 200 \ \text{GeV}, \\ \textbf{1.7 TeV} & m(\tilde{\chi}_1^0) < 300 \ \text{GeV}, \\ \textbf{1.87 TeV} & m(\tilde{\chi}_1^0) = 0 \ \text{GeV} \\ \textbf{1.87 TeV} & m(\tilde{\chi}_1^0) = 0 \ \text{GeV} \\ \textbf{1.87 TeV} & m(\tilde{\chi}_1^0) = 0 \ \text{GeV} \\ \textbf{2.0 TeV} \\ \textbf{2.0 TeV} \\ \textbf{2.15 TeV} & cr(\text{NLSP}) < 0.1 \ \text{mm} \\ \textbf{2.05 TeV} & m(\tilde{\chi}_1^0) = 1.700 \ \text{GeV}, \ cr(\text{NLSP}) < 0.1 \ \text{mm}, \ \mu > 0 \\ m(\tilde{G}) > 1.8 \times 10^{-4} \ \text{eV}, \ m(\tilde{q}) = m(\tilde{q}) = 1.5 \ \text{TeV} \\ \end{array}$                                                                                                                                              | 1712.02332<br>1711.03301<br>1712.02332<br>1712.02332<br>1611.05791<br>1706.03731<br>1708.02794<br>1607.05979<br>ATLAS-CONF-2017-080<br>ATLAS-CONF-2017-080<br>1502.01518 |  |  |
| 3 <sup>rd</sup> gen.<br><u></u> g med.                       | $ \begin{array}{c} \tilde{g}\tilde{g},  \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0 \\ \tilde{g}\tilde{g},  \tilde{g} \rightarrow t \tilde{\chi}_1^0 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0-1 <i>e</i> , µ                                                                                                                                             | 3 b<br>3 b                                                                                                                       | Yes<br>Yes                                           | 36.1<br>36.1                                                                        | ξ<br>ğ                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{ll} \textbf{1.92 TeV} & m(\tilde{\chi}_1^0){<}600\text{GeV} \\ \hline \textbf{1.97 TeV} & m(\tilde{\chi}_1^0){<}200\text{GeV} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1711.01901<br>1711.01901                                                                                                                                                 |  |  |
| 3 <sup>rd</sup> gen. squarks<br>direct production            | $ \begin{array}{c} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{1} \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow b\tilde{\chi}_{1}^{1} \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow \tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow \tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1} (n tatural GMSB) \\ \tilde{i}_{2}\tilde{i}_{2}, \tilde{i}_{2} \rightarrow \tilde{i}_{1} + Z \\ \tilde{i}_{2}\tilde{i}_{2}, \tilde{i}_{2} \rightarrow \tilde{i}_{1} + h \end{array} $                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0\\ 2\ e,\mu\ (\text{SS})\\ 0\mathchar`-2\ e,\mu\\ 0\mathchar`-2\ e,\mu\ (0\\ 2\ e,\mu\ (Z)\\ 3\ e,\mu\ (Z)\\ 1\mathchar`-2\ e,\mu \end{array}$ | 2 b<br>1 b<br>1-2 b<br>0-2 jets/1-2 b<br>mono-jet<br>1 b<br>1 b<br>4 b                                                           | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 36.1<br>36.1<br>4.7/13.3<br>20.3/36.1<br>36.1<br>20.3<br>36.1<br>36.1<br>36.1       | \$\bar{b}_1\$         950 GeV           \$\bar{b}_1\$         275-700 GeV           \$\bar{t}_1\$         117-170 GeV           \$\bar{t}_1\$         90-198 GeV           \$\bar{t}_1\$         90-198 GeV           \$\bar{t}_1\$         90-430 GeV           \$\bar{t}_1\$         150-600 GeV           \$\bar{t}_2\$         290-790 GeV           \$\bar{t}_2\$         320-880 GeV | $\begin{split} \mathfrak{m}(\tilde{\chi}_{1}^{0}) &< 420  \text{GeV} \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}) &< 200  \text{GeV}, \mathfrak{m}(\tilde{\chi}_{1}^{1}) = \mathfrak{m}(\tilde{\chi}_{1}^{0}) + 100  \text{GeV} \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}) &= 2\mathfrak{m}(\tilde{\chi}_{1}^{0}), \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 55  \text{GeV} \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}) &= 1  \text{GeV} \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}) &= 1  \text{GeV} \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}) &= 5  \text{GeV} \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}) &= 5  \text{GeV} \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}) &= 5  \text{GeV} \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}) &= 0  \text{GeV} \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}) &= 0  \text{GeV} \end{split}$                                                                                                                                                                                                                                                                                                         | 1708.09266<br>1706.03731<br>1209.2102, ATLAS-CONF-2016-077<br>1506.08616, 1709.04183, 1711.11520<br>1711.03301<br>1403.5222<br>1706.03986<br>1706.03986                  |  |  |
| EW<br>direct                                                 | $\begin{split} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{2}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{\nu}\nu), \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{W} \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{W} \tilde{\chi}_{1}^{0} \tilde{h} \tilde{\chi}_{1}^{0}, h \rightarrow b \tilde{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{3}^{0} \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ GGM (wino NLSP) weak prod., \tilde{\chi}_{1}^{0} \rightarrow \\ GGM (bino NLSP) weak prod., \tilde{\chi}_{1}^{0} \rightarrow \end{split}$ | 2 e,μ<br>2 e,μ<br>2 τ<br>3 e,μ<br>2-3 e,μ<br>e,μ,γ<br>4 e,μ<br>γ <sub>G</sub> 1 e,μ + γ<br>γ <sub>G</sub> 2 γ                                                     | 0<br>0<br>                                                                                                                       | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 36.1<br>36.1<br>36.1<br>36.1<br>20.3<br>20.3<br>20.3<br>36.1                        | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                    | $ \begin{split} \mathbf{m}(\tilde{x}_{1}^{0}) = 0 \\ \mathbf{m}(\tilde{x}_{1}^{0}) = 0, \ \mathbf{m}(\tilde{x}, \tilde{y}) = 0.5(\mathbf{m}(\tilde{x}_{1}^{+}) + \mathbf{m}(\tilde{x}_{1}^{0})) \\ \mathbf{m}(\tilde{x}_{1}^{0}) = 0, \ \mathbf{m}(\tilde{x}, \tilde{y}) = 0.5(\mathbf{m}(\tilde{x}_{1}^{+}) + \mathbf{m}(\tilde{x}_{1}^{0})) \\ \mathbf{m}(\tilde{x}_{1}^{+}) = \mathbf{m}(\tilde{x}_{2}^{0}), \ \mathbf{m}(\tilde{x}_{1}^{0}) = 0, \ \mathbf{m}(\tilde{x}, \tilde{y}) = 0.5(\mathbf{m}(\tilde{x}_{1}^{+}) + \mathbf{m}(\tilde{x}_{1}^{0})) \\ \mathbf{m}(\tilde{x}_{1}^{+}) = \mathbf{m}(\tilde{x}_{2}^{0}), \ \mathbf{m}(\tilde{x}_{1}^{0}) = 0, \ \tilde{c} \ \text{decoupled} \\ \mathbf{m}(\tilde{x}_{1}^{0}) = \mathbf{m}(\tilde{x}_{2}^{0}), \ \mathbf{m}(\tilde{x}_{1}^{0}) = 0, \ \tilde{c} \ \text{decoupled} \\ \mathbf{m}(\tilde{x}_{2}^{0}) = \mathbf{m}(\tilde{x}_{2}^{0}), \ \mathbf{m}(\tilde{x}_{1}^{0}) = 0, \ \mathbf{m}(\tilde{x}_{2}^{0}) + \mathbf{m}(\tilde{x}_{1}^{0})) \\ c\tau < 1 \ \text{mm} \\ c\tau < 1 \ \text{mm} \end{split} $ | ATLAS-CONF-2017-039<br>ATLAS-CONF-2017-039<br>1708.07875<br>ATLAS-CONF-2017-039<br>ATLAS-CONF-2017-039<br>1501.07110<br>1405.5086<br>1507.05493<br>ATLAS-CONF-2017-080   |  |  |
| Long-lived<br>particles                                      | $\begin{array}{l} \label{eq:constraints} \hline \text{Direct}\tilde{\chi}_1^+\tilde{\chi}_1^-\text{ prod., long-lived}\tilde{\chi}_1^+\\ \hline \text{Direct}\tilde{\chi}_1^+\tilde{\chi}_1^-\text{ prod., long-lived}\tilde{\chi}_1^+\\ \hline \text{Stable, stopped}\tilde{g}\text{R-hadron}\\ \hline \text{Stable}\tilde{g}\text{R-hadron}\\ \hline \text{Metastable}\tilde{g}\text{R-hadron}\\ \hline \text{Metastable}\tilde{g}\text{R-hadron}\\ \hline \text{Metastable}\tilde{g}\text{R-hadron}, \\ \widetilde{g}\rightarrow qq\tilde{\chi}_1^0\\ \hline \text{GMSB, stable}\tilde{\tau},\tilde{\chi}_1^0\rightarrow\tilde{\tau}(\tilde{e},\tilde{\mu})+\tau(e,\mu)\\ \hline \text{GMSB},\tilde{\chi}_1^0\rightarrow\gamma\tilde{G}, \text{ long-lived}\tilde{\chi}_1^0\\ \hline \tilde{g}\tilde{g},\tilde{\chi}_1^0\rightarrow eev/e\muv/\mu\muv \end{array}$                                                                                                                                                                                                   | Disapp. trk<br>dE/dx trk<br>0<br>trk<br>dE/dx trk<br>displ. vtx<br>1-2 $\mu$<br>2 $\gamma$<br>displ. $ee/e\mu/\mu$                                                | 1 jet<br>-<br>1-5 jets<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                        | Yes<br>Yes<br>-<br>Yes<br>-<br>Yes<br>-<br>Yes       | 36.1<br>18.4<br>27.9<br>3.2<br>32.8<br>19.1<br>20.3<br>20.3                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} m(\tilde{\chi}_{1}^{1})\text{-m}(\tilde{\chi}_{1}^{0})\text{160 MeV}, \tau(\tilde{\chi}_{1}^{1})\text{=-0.2 ns} \\ m(\tilde{\chi}_{1}^{1})\text{-m}(\tilde{\chi}_{1}^{0})\text{160 MeV}, \tau(\tilde{\chi}_{1}^{1})\text{<-15 ns} \\ m(\tilde{\chi}_{1}^{0})\text{=-100 GeV}, \tau\text{-}10 \text{ MeV}, \tau(\tilde{g})\text{<-100 os} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1712.02118<br>1506.05332<br>1310.6584<br>1606.05129<br>1604.04520<br>1710.04901<br>1411.6795<br>1409.5542<br>1504.05162                                                  |  |  |
| RPV                                                          | $ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_\tau + X, \widetilde{v}_\tau \rightarrow e\mu/e\tau/\mu\tau \\ Blinear \ RPV \ CMSSM \\ \widetilde{X}_1^\dagger \widetilde{X}_1^-, \widetilde{X}_1^+ \rightarrow W \widetilde{X}_1^0, \widetilde{X}_1^0 \rightarrow eev, e\mu v, \mu\mu v \\ \widetilde{X}_1^\dagger \widetilde{X}_1^-, \widetilde{X}_1^+ \rightarrow W \widetilde{V}_1^0, \widetilde{X}_1^0 \rightarrow \tau\tau v_e, e\tau v_\tau \\ \widetilde{g} \widetilde{g}, \widetilde{g} \rightarrow q \widetilde{q} \widetilde{X}_1^0, \widetilde{X}_1^0 \rightarrow qqq \\ \widetilde{g} \widetilde{g}, \widetilde{g} \rightarrow \widetilde{tr} \widetilde{U}_1^0, \widetilde{X}_1^0 \rightarrow qqq \\ \widetilde{g} \widetilde{g}, \widetilde{g} \rightarrow \widetilde{tr} \widetilde{U}_1^1, \widetilde{X}_1^1 \rightarrow bs \\ \widetilde{t}_1 \widetilde{t}_1, \widetilde{t}_1 \rightarrow bs \\ \widetilde{t}_1 \widetilde{t}_1, \widetilde{t}_1 \rightarrow b\ell \end{array} $                                                                | $e\mu,e\tau,\mu\tau$ 2 e, $\mu$ (SS)<br>4 e, $\mu$<br>3 e, $\mu$ + $\tau$<br>0 4<br>1 e, $\mu$ 8<br>1 e, $\mu$ 8<br>0<br>2 e, $\mu$                               | -<br>0-3 b<br>-<br>-<br>-5 large-R je<br>3-10 jets/0-4<br>3-10 jets/0-4<br>2 jets + 2 b<br>2 b                                   | -<br>Yes<br>Yes<br>ets -<br>b -<br>b -               | 3.2<br>20.3<br>13.3<br>20.3<br>36.1<br>36.1<br>36.1<br>36.7<br>36.1                 | $ \begin{array}{c} \bar{r}_{\tau} \\ \bar{q}, \bar{g} \\ \bar{q}, \bar{g} \\ \bar{\chi}_{1}^{+} \\ 1 \\ \bar{\chi}_{1}^{+} \\ \bar{\chi}_{1}^{+} \\ \bar{g} \\ \bar{g} \\ \bar{g} \\ \bar{g} \\ \bar{i}_{1} \\ \bar{i}_{1} \\ 100-470 \text{ GeV} \\ 480-610 \text{ GeV} \\ \bar{i}_{1} \\ 0.4 \end{array} $                                                                               | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1607.08079<br>1404.2500<br>ATLAS-CONF-2016-075<br>1405.5086<br>SUSY-2016-22<br>1704.08493<br>1704.08493<br>1710.07171<br>1710.05544                                      |  |  |
| Other                                                        | Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                 | 2 <i>c</i>                                                                                                                       | Yes                                                  | 20.3                                                                                | č 510 GeV                                                                                                                                                                                                                                                                                                                                                                                  | mp(1)<200 dev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1501.01325                                                                                                                                                               |  |  |
| *Only a<br>phen<br>simpl                                     | a selection of the available ma<br>omena is shown. Many of the l<br>ified models, c.f. refs. for the a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ss limits on r<br>limits are ba<br>Issumptions                                                                                                                    | new state<br>sed on<br>made.                                                                                                     | s or                                                 | 1                                                                                   | )-1 1                                                                                                                                                                                                                                                                                                                                                                                      | Mass scale [TeV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |  |  |

probing supersymmetry at the TeV scale... 05/06/2018 Dark Matter at the LHC GEMMA Physics Workshop

#### **CORNERING SUPERSYMMETRY**

example from Run-1: exclusion contour combining 8 TeV results of searches in final states with 2, 3 and 4 leptons, together with directdetection, relic density and flavour constraints

- searches for supersymmetric particles span parameter space often compatible with Dark Matter relic density
  - Run-1 results expressed in terms of fraction of allowed models which are also excluded
    - yellow area: less than 10% of the explored phase space was excluded
- how to fill the missing space?
  - analyse all signatures with full dataset at 13 TeV
  - a significant improvement in mass reach would come from an increase in center-of-mass energy

![](_page_14_Figure_10.jpeg)

#### **HIGH LUMINOSITY, HIGH CHALLENGES**

data taking programmed for the next 20 years: detector upgrades needed to cope with the higher instantaneous luminosity...

![](_page_15_Figure_3.jpeg)

![](_page_15_Picture_4.jpeg)

![](_page_15_Figure_5.jpeg)

#### A LOOK AT THE FUTURE

#### <u>CMS-PAS-FTR-16-002</u>

 invisible H decay searches limited by systematics within 2023

Dark Matter at the LHC

may reach BR(H→inv) ~ 0.05 by
 2038

CMS-TDR-014

ATLAS: new trigger design integrates new silicon tracker (ITk) CMS: similar, could target 2-3 GeV tracks

high-granularity detectors to replace/ enhance calorimetry in the forward region and improve pile-up rejection

- R&D for pileup-robust detector upgrades
  - track information at early stages of missing transverse momentum trigger to reduce noise rate
  - an opportunity for long-lived particles
    - new fast timing layers help to reconstruct displaced vertexes?

![](_page_16_Figure_13.jpeg)

![](_page_16_Figure_14.jpeg)

Valerio Ippolito INFN Sezione di Roma 05/06/2018 GEMMA Physics Workshop

#### CONCLUSIONS

- LHC, a gateway to the invisible?
  - the Higgs boson discovery opens a new era for precision measurements and newphysics searches
- includes for example searches in final states with MET and b- or t-quarks (statistically limited)
- strong physics programme for Hrelated and spin-0 interactions
  - WIMP search complementary/ unique with respect to direct detection
  - non-standard, challenging searches for long-lived states
- ATLAS and CMS are robust, multipurpose detectors of the unknown
  - understanding the invisible needs mastering the visible

![](_page_17_Picture_12.jpeg)

Valerio Ippolito INFN Sezione di Roma

06/2018 MA Physics Workshop

Spares

#### WHAT WE LEARNED FROM HIGGS COUPLINGS

05/06/2018

•

JHEP 08 (2016) 045 JHEP 11 (2015) 206

- constraints on invisible and undetected H branching ratios also come from coupling measurements
  - measure H event rates simultaneously in all channels and compare to SM expectation
- this approach lives in a simplified ۲ framework for probing deviations due to new physics

direct invisible searches provide leading sensitivity w.r.t. other channels (plot on the right)

modify H lagrangian density with "coupling strength" factors (example below)

![](_page_19_Figure_9.jpeg)

![](_page_19_Figure_10.jpeg)