First results from the DAMPE mission

Andrii Tykhonov (for the DAMPE collaboration)

DArk Matter Particle Explorer (DAMPE)

Launched on Dec 17, 2015, from the Jiuquan Satellite Launch Center, Gobi desert, China.

Operates on a sun-synchronous Sky-survey mode, permanently oriented to zenith

Scientific Goals

DAMPE (0.3 m² sr yr)

Pamela

CREAM

Detection of:

- e/γ @ 1GeV 10 TeV (1% energy resolution)
- p/nuclei @ 50GeV 500 TeV
- γ-rays

Excellent energy resolution (1% for 100 GeV electrons), direction and particle identification capabilities.

Search for Dark Matter annihilation/decay signatures.

Collaboration

China

- Purple Mountain Observatory, CAS, Nanjing
- University of Science and Technology of China, Hefei
- Institute of High Energy Physics, CAS, Beijing
- Institute of Modern Physics, CAS, Lanzhou
- National Space Science Center, CAS, Beijing

Switzerland

- University of Geneva

• Italy

- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN-LNGS and Gran Sasso Science Institute
- INFN Lecce and University of Salento

PSD

- 1 X double-layer and 1 Y double layer
- 82 x 82 cm layer dimension
- Scintillator bar dimension:
 1.0 (thick) x 2.8 (wide) x 82.0 (long) cm³
- Bars staggered by 0.8 cm in a layer

6.6 m² of Si, 768 wafers

- 14 layers (7X and 7Y):
 - horoscopic arrangement, alternating X and Y layers
 - 22 bars per layer
 - Total 31 X₀
 - Bar dimension: 2.5 x 2.5 x 60 cm³
 - Two PMTs coupled to each bar in two ends

- 4 large-area boron doped plastic scintillators
- 30 x 30 x 1 cm³ scintillator dimension

$$n + {}^{10}B \rightarrow \alpha + {}^{7}Li + \gamma$$

Thermal cycling

Vibration & Acceleration & Shock

DAMPE beam-tests @ CERN

PS & SPS, Oct-Nov 2014 — e/p/γ/π/μ

SPS, Mar 2015 — lons, p

SPS, Jun 2015 — e/p/γ/π/μ

SPS, Nov 2016 — Ions (STK ladder tests)

BGO energy resolution: protons

BGO energy resolution: e/p separation

e/p discriminator

15 orbits and 5M events per day

- Cosmic rays bent by geomagnetic field:
 - cutoff for e++e- at about 10GeV
 - calculated using the IGRF-12 model
 - allows to estimate absolute energy scale

Energy scale correction @13 GeV = **1.25%** ± **1.75%** (stat) ± **1.34%** (syst)

STK alignment and position resolution

10.1016/j.nima.2018.02.105

PSD alignment and charge resolution

Charge resolution before and after the alignment, and the relative improvement:

Н	He	Li	Be	В	С	Ν	0	Ne	Mg	Si
0.037	0.056	0.126	0.124	0.138	0.156	0.193	0.202	0.239	0.254	0.286
0.035	0.051	0.119	0.119	0.131	0.149	0.188	0.193	0.229	0.240	0.274
5.4%	8.9%	5.5%	4.0%	5.1%	4.5%	2.6%	4.5%	4.2%	5.5%	4.2%

PSD alignment is performed by optimising particle path length in a PSD bars

BGO & PSD signal stability

STK Noise and Alignment stability

average noise vs avg ladder temperature (from 16.8.2016 to 28.4.2017)

Effect of regular STK alignment update:

An excellent instrument for the identification and analysis of pulsars in an energy 1-100 GeV!

Gamma-Rays: Variable Sources

Two AGNs, CTA 102 and 3C 454.3 are found to be significantly variable at time scales longer than one week.

Photon clusterings: 63 photon pairs, one photon triple, and one quadruple ($\Delta T < 1500s$ and $\Delta \Theta < 1^{\circ}$)

Astronomy telegram: <u>astronomerstelegram.org/?read=9901</u> For details: <u>pos.sissa.it/301/617/pdf</u>, <u>pos.sissa.it/301/616/pdf</u>

Electrons: e/p discrimination

- Electron showers are narrow and short
 - Longitudinal shower shape

SumRMS - sum of shower RMS in 14 layers of BGO

• Lateral shower shape

 \mathcal{F}_{last} —fraction of total shower energy in the last shower layer.

5.6 TeV electron candidate

Electrons: e/p discrimination

 $\zeta = \mathcal{F}_{last} \times [SumRMS / mm]^4 / (8 \times 10^6)$

Electrons: selection

- High-Energy Trigger
- Pre-selection (clean-up)
- Fiducial volume
- Heavy nuclei removal
 - STK & PSD charge in track-matched sample
 - First 2 layer of BGO for BGO-only events
- ζ signal extraction

Very high trigger and selection efficiency, good data-MC agreement!

Electrons: flux

Electrons: flux

Electrons: flux & single power law fit

 $\Phi = (1.64 \pm 0.01) \times 10^{-4} (E/100 \text{GeV})^{-3.13 \pm 0.01}$

Electrons: flux & smoothly broken power law fit

 $\Phi = (1.62 \pm 0.01) \times 10^{-4} (E/100 \text{GeV})^{-3.09 \pm 0.01} \left[1 + (E/(914 \pm 98 \text{ GeV}))^{-(3.09 - 3.92 \pm 0.01 \pm 0.20)/\Delta} \right]^{-\Delta}$

Electrons: flux & smoothly broken power law fit

https://www.nature.com/articles/nature24475

Electrons: flux & smoothly broken power law fit

https://www.nature.com/articles/nature24475

CR protons: selection & energy measurement

- High-Energy Trigger
- Pre-selection (clean-up)
- Track selection (STK)
- Charge selection (PSD)

DPMJET and FTFP hadronic models are consistent between each other

About 1.6 nuclear length in the calorimeter → a deconvolution of measured energy into primary is applied

CR protons

CR helium

Selection

- High-Energy Trigger
- BGO fiducial
- Shower shape
 - longitudinal and lateral to exclude side entering events
- Charge selection (PSD+STK)

https://pos.sissa.it/301/169/pdf

CR helium

Andrii Tykhonov (University of Geneva)

Conclusions

- DAMPE detector works extremely well since launch in December 2015.
- Electron + positron flux measured with very high precision:
 - A clear spectral break directly observed at ~ 1 TeV.
- Cosmic-ray nuclei measurements (proton and helium) coming soon.
- Photon detection capabilities demonstrated.
 - More statistics needed to profit from the excellent energy resolution.

Conclusions

- DAMPE detector works extremely well since launch in December 2015.
- Electron + positron flux measured with very high precision:
 - A clear spectral break directly observed at ~ 1 TeV.
- Cosmic-ray nuclei measurements (proton and helium) coming soon.
- Photon detection capabilities demonstrated.
 - More statistics needed to profit from the excellent energy resolution.

Thank You!

Something more

Comparison with AMS-02 and FERMI

	DAMPE	AMS-02	Fermi LAT
e/γ Energy res.@100 GeV (%)	1.5	3	10
e/γ Angular res.@100 GeV (°)	0.1	0.3	0.1
e/p discrimination	10 ⁵	10 ⁵ - 10 ⁶	10 ³
Calorimeter thickness (X ₀)	32	17	8.6
Geometrical accep. (m ² sr)	0.29	0.09	1

Boresight alignment

Source Name	Photon Number	θ_X (degree)	θ_Y (degree)	$\theta_Z(degree)$
Vela	1438	0.13±0.01	$0.02{\pm}0.01$	-0.14 ± 0.02
Geminga	446	0.13±0.02	-0.02 ± 0.02	-0.14 ± 0.02
Crab	265	0.11±0.02	-0.03±0.03	-0.15 ± 0.03

The DAMPE detector

Mass: 1400 Kg Power: 400 W Data: 13 GB/day Lifetime: 5 years

BGO calorimeter

Carbon Fiber Structure

BGO crystal installation

PMT installation

Cable arranging

Cable connectors

BGO calorimeter

Silicon TracKer (STK)

Assembly jig for mounting ladders on the trays, O(100) µm precision

Tungsten converter plates (16 per tray)

The trays' metrology procedure

DAMPE EQM beam tests @ CERN: ions

Beam Test Setup

- Primary ion: ⁴⁰Ar
- Secondary ions: Z=2-18, A/Z=2
- Energy: 40 GeV/nucleon, 75 GeV/nucleon
- PID for secondary ions with dE/dx detectors on beam line:

DAMPE EQM beam tests @ CERN: ions

MIPs spectrum in the BGO crystal (40 GeV/nucleon)

DAMPE EQM beam tests @ CERN: ions

PSD charge attenuation

Event rate

51