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 + What makes a neutron star poorly known?

~ + Methodology of narrow-band search
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Looking for Continuous gravitational waves

The LVC collaboration has detected GWs emitted from compact binaries

coalescences.

Masses in the Stellar Graveyard
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e Detected GWs arise from

the orbital motion of
compact objects.

GW170817 is the only
detection associated with
the presence of at least a
Neutron Star (NS) in the
binary.

Isolated and asymmetric
spinning NSs are also
expected to emit GW.
The signal is however
very different from the
detected ones.
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High stability in the rotational period (~10-12 Hz/s)
- Emitted at two times the rotational frequency of the NS
Ephemeris are inferred mainly from radio observations, as we will
see later.
Long;liVed coherent signals (>months).
- NSs are expected to be very dense (104 g/cm3).
Moment of inertia ~ 1038 kg m?




Looking for Continuous gravitational waves

NS'’s rotational phase: We need to take into account the neutron star
rotational phase. We use the frequency + its derivatives (1+N parameters)

- = (t—to)
VNS(t) Z () =
- 12=0

Romer phase shift: In the detector reference frame, the signal is
modulated by the Doppler effect due to the Earth motion. A good
knowledge of the sky-localisation ( +2 parameters)

ft)=2- yNs(t) (1 - 'Cn)

. Sidereal modulation: The GW detectors have a response to the GW
~ polarisations encoded in the antenna pattern. This modulation depends
on the sky-_localisation;

The waveform depends on 8 parameters:

(hOyCOS Law ¢0) " . - » (f7f7a75)




Looking for Continuous gravitational waves

- The narrow-band search makes use of a statistic closely related to the
famous F-statistic firstly defined in Jaranowski et al [Phys. Rev. D 58, 063001
(1998)] and later extended for multiple detectors in Cutler and Schutz [Phys.
Rev. D 72, 063006, 2005]. The data is modelled as a superposmon of Gaussian
noise and signal.

L(h|x)  eXhx=N - \h> Ho ZH Ap(A) >

[]aranowskz et al, Phys. Rev. D 58, 063001]
We can define the 5-Vect0r s detection statistic as

- o
S = ZP“ ATA) (A,lA,)

P. Astone et al [CQG 27 194016]
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It is possible to marginalise over the intrinsic parameters and that's what
~we usually do in GW searches. So only four parameters remain
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Multi-frequency templates

Single templaté sensitivity
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What can we learn from CW7

_ 'The maximum elhpt1c1ty that a neutron star can sustain can be related to the
| equatlon of state and to the neutron star mterlor model see B. Owen
| [Phys Reuv.Let 95, 211101] = ' =

In order to gam mformat1on on the equat10n of state, a ]omt measure of the
NS’s radlus, mass, magnetlc ﬁeld and elllpt1c1ty is needed

Some models
- ‘S”olid strange stars: Fiducial maximum ellipticity 6 x 104

. Hybridahd meson condense stars: Fiducial maximum ellipticity 3-9 x 10-¢

| Canonical (NSS);‘ 2-6 x 107
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hat makes a NS poorly known?

Typical values for 4months of data are 1024 Hz/s
P. Astone et al [Phys. Rev. D 89, 062008]

Typical values for 4months of data are 10> deg
Typical values for 4months of data are 107 Hz

Searched spin-down bin:  f

Searched frequency bin: § f

Sky angles

waveform the power of the signal

recovery of the s
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| What makes a NS poorly known’

'__Parameters needed for CW searches (pos1t10n and frequency evolutron) are
,~-'usually estimated from EIectromagnetlc observatmns ==
| jHowever if the pulsar S tlmlng is not accurate, th1s may result in the
necess1ty of explormg many templates in our searches =

[ [ 1 [
[ |ATNF's pulsars

1 template =ae 1 template — i,
B 02 ~ 1yr B - =8."Ia:m

I O1 ~ 1yr :
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ATNF's pulsars

Uncertamtles of rotatlonal perlod for the '1so ated radio P ul S the ATN -
catalog (v1 58) ' . -~ -
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- Different astrophys1cal scenarios for the NS may also play 1mp0rtant roles
in our ab1l1ty to detect a s1gnal (see D. I ]ones Bl |

Freely precessmg neutron stars may show a decouplmg of the frequency
inferred from EM 0bservat10ns and the GW em1tted frequency

, The split is estim'atedj ’to being of the orderll

= /" Rigidity parameter

| =g "-‘_5." 'fw 3 b I/IcrUSt
s () ()

D. L Jones and N. Andeerson (2002), MNRAS 331 1, 203-220

*If we are lookmg ata freely precessmg neutron star we may found a
pd1fference in EM pulse em1ss1on and GW em1ss1on
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Cleaning and data
preparation

£
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- | Spin-down corrections |




Cleamng and data |
preparation 7

i Barycentric corrections |

[ Spin-down corrections |

- We Want to demodulate the Romer modulatlon from

the 51gna1 | -
)

0 =2 w1+ 2

—c

* This can be done by a non—umform resampling of
- ourdata deflmng a new time which takesinto

account all the p0551ble tlme delays.

7' = t'+'_AR —|— Ap — A,

The process can be though as sampling in a
reference frame that does not move w1th respect to

_Vthe NS




Cleamng and data y’ Here we w1sh to correct the mtrm31c modulat10n due |
preparation to the spm—down of the source =

wns(t) =

Barvycentric corrections } »
Bt ; Th1s is done with the sub- heterodyne i.e. correcting

the phase of our time-series.

i Spin-down corrections §

| _ Heterodyned data Phase shift

e*ifﬁéd




Cleamng and data After all correct1ons have been apphed we compute

preparation  the 5-Vector 5 detect10n stat1st1c usmg two matched
= 1 *’-Vj-"';‘jﬁﬁlters | =

| Barycentric corrections |

{ Spin-down corrections |
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GW astronomy with Narrow-band

‘ On the method:

~* The method was 1n1t1a11y developed in P, Astone et al [Phys Rev. D89, 062008
20107, and it is able to explore ~ 106 waveforms in ~ 330 CPU hours.

. The method was recently extended and opt1mlsed for wider space searches
granting an improvement on the computatlonal load of ~1000 in
Mastrogzovanm et al. [CQG 135007, 2017] . |

Appllcatlon to LVC data:
- Applied for the first time looking for CW from the Crab and Vela pulsar
~ using the VSR4 run. Explored 106 waveforms in J. Aasi et al [Phys. Rev. D 91,
022004].
-~ After the optlmrsatlon the method has been applied to O1-LLO/LHO

- datasets. 11 pulsars have been targeted (see results later) in B. P. Abbot et al.
 [Phys. Rev. D 96, 122006]. |

+ The method will be apphed also to O2 data targeting ~20 pulsars for WhICh
L ilis expected to beat or closely approach the spm—down limit.




hmx 10_25 €yl X 10_4 hul/hsd Erot/EGW <

J0205 4+ 6449 3.76 7.7 0.5440.09 0.29
J0534+2200 (Crab) 1.08 0.58 0.07+0.02 0.005
J0835-4510 (Vela) 0.28 5.3 0.274+0.02 0.07
Y Spin-down limit W 95 % CL upper-limits Tz ST
J1813-1749 1.9 4.8 0.644+0.04 0.41
J1833-1034 3.08 13 0.99+4+0.09 ce
J1952 + 3252 1.31 1.4 1.314+0.22

J2022 + 3842 1.90 11 1.774+0.35

J2043 4 2740 144 47 2.07+0.83

J2229 + 6114 1.78 3.4 0.54+0.35

J2229+6114
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B. P. Abbott et al (2017), Phys. Rev. D 96, 122006
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GW astronomy with narrow bands' ()1

~ + Beaten the spm-down hm1t for 4 pulsars Crab Vela ]1813 1749 and_
. Poogaslls . |
. Improvement on Crab and Vela upper—hmlts by a factor 7 and 3 5
respectively. | |
* Spin-down beaten for the first time for ]1813 1749 Prev1ously not
analysed due to the lack of accurate ephemeris. =
* For 4 pulsars (J0205+6449, J1400-6326, J1813- 1246 and ]1833 1034) a large
= fractlon of the upper—hmlts were below the spm—down limit.

- Name fo [Hz| Af [Hz] fo [Hz/s] Af [Hz/s)
~J0205+6449 30.4095820 0.03 —8.9586 - 10~ 11 1.75-107 5

~ J05344-2200 (Crab) 59.32365204 0.10 —7.3883-1071° 1.48 - 10~ 12
- J0835-4510 (Vela) 22.3740981 0.03 —3.1191- 10~ 6.43 - 10714
~ J1400-6326 64.1253722 0.07 —8.0017-10~ " 1.75-107"°
- J1813-1246 41.6010333 0.04 —1.2866 - 10! 6.43-10"
- J1813-1749 44.7128464 0.05 —1.5000 - 10~ *° 3.03-107*
~ J1833-1034 32.2940958 0.04 —1.0543- 1071 2.11-10713
- J1952+4-3252 50.5882336 0.05 —7.4797 - 10712 6.43 - 10714
- J2022+-3842 41.1600845 0.04 —7.2969 - 10~ 1.60 - 10~ *°
- J2043+2740 20.8048628 0.05 —3.4390 - 1071 6.43-10"
- J2229+6114 38.7153156 0.06 —5.8681-10~ ' 1.19-107"°

~ B.P.Abbott et al (2017), Phys. Rev. D 96,122006




GW astronomy with narrow band ‘“'“>‘—02

Pulsars for Whlch we expect to put mterestmg upper—hmlts (smgle IFO)

3

Narrow-band expected sensitivity using 1 yr of data for aLigo at design sensitivity
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En’érgeti’_c' radio

pulsars

~ Transient radlo
pulsars -

~ Recycled Ao‘r. B
milli'seCOnd |

_pulsars &
GW frequency [Hz] :

~ *Pulsars’ parameters from ATNF catalogue v1.58
| g 18




Mmlmum e111pt1c1ty detectable by LIGO at demgned sen81t1V1ty usmg
1 yr of full coherent mtegratlon and a smgle (IFO) = |

Population of ATNF's pulsars, aLigo designed sensitivity ~ 1yr

20 kpc
10 kpc
5 kpc
3 kpc
1 kpc

10°
GW Frequency [Hz]

'*P'lilsfél‘r‘s’ p‘a;iramé_te'ré»ﬁfrbm.AT‘N Fcatal ogu e v1. 58
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Conclusmns

e Grav1tatlonal waves detectors are approachmg the1r clesrgn
conﬁguratlon =

- With more sensmve and longer runs, data analys1s p1pelmes requlre
very accurate template waveforms

- Ephemer1des from EM partners may not be enough for the appllcatlon
| :of ]ust 1 template - | -

- Narrow-band searches can overcome the computatlonal load of the
~ analysis Whlle offermg a sen51t1V1ty comparable to a full matched filter
o techmque |

. Combiningcoherentlyseveral [FOs will improve the search sensitivity.

' Narrow-band searches may play an 1mportant role in grav1tatronal-
Waves astronomy | ' '




