Astrophysical sources of continuous gravitational waves

LIGO-G1801127-v1

Gravitational wave signals

<u>Compact binary inspirals:</u>

"chirps"

Supernovae, etc.. :

Pulsars:

Cosmological signals:

"bursts"

"continuous"

"stochastic"

-100 μK

Gravitational wave signals

Cosmological signals:

"stochastic"

-100 μK +100 μK

Neutron star mountains

 \blacksquare Emission at $\,\omega=2\Omega$

- Supported by crustal elasticity or magnetic fields
- **Solution** Theoretical (elastic) upper limit $\epsilon pprox 10^{-5}$

(BH, Jones, Andersson 2006, Horowitz & Kadau 2009, Johnson-McDaniel & Owen 2013)

(Animation by Ben Owen)

Rotating observer

Inertial observer

$$E_r = E_i - J\Omega$$

r-mode unstable to GW emission

Emission at
$$\,\omegapproxrac{4}{3}\Omega$$

Viscosity damps the mode except in a window of temperatures and frequencies

(Andersson 1998, Friedman & Morsink 1998)

(Animation by Ben Owen)

Rotating observer

Inertial observer

$$E_r = E_i - J\Omega$$

r-mode unstable to GW emission

Emission at
$$\,\omegapproxrac{4}{3}\Omega$$

Viscosity damps the mode except in a window of temperatures and frequencies

(Andersson 1998, Friedman & Morsink 1998)

(Animation by Ben Owen)

(Animation by Ben Owen)

Rotating observer

Inertial observer

$$E_r = E_i - J\Omega$$

r-mode unstable to GW emission

Emission at
$$\,\omegapproxrac{4}{3}\Omega$$

Viscosity damps the mode except in a window of temperatures and frequencies

(Andersson 1998, Friedman & Morsink 1998)

Young neutron stars

r-modes can spin-down newborn NSs

(Owen et al. 1998, Alford & Schweizer 2014)

<u>R-modes in J0537?</u>

 $\alpha \approx 0.1$

Evidence that underlying n=7 for J0537?

(Andersson, Antonopoulou, Espinoza, BH & Ho 2017)

Detection?

Targeted search for J0537 would require 2 months of data for Advanced LIGO design sensitivity (Andersson, Antonopoulou, Espinoza, BH & Ho 2017)

At least 4 years for a directed search (pulsar very glitchy)

Mature Neutron Stars

'standard' radio pulsars $B \approx 10^{12} \mathrm{G}$ $\tau \gtrsim 10^5 \mathrm{yr}$

Hall drift can lead to complex magnetic fields and a 'mountain'

 $\epsilon \approx 10^{-8} - 10^{-6}$ ($\epsilon \approx 10^{-7}$ for the Crab)

(Suvorov et al 2016)

For this population current LVC limits $\epsilon \approx 10^{-5} - 10^{-4}$ (Abbott et al. 2017) 8

Old Recyled Neutron Stars

<u>Cutoff of distribution at ~ 730 Hz</u>

Fastest Neutron Star: 716 Hz

(Chakrabarty et al 2003, Patruno 2010, Papitto et al. 2014, Patruno, BH and Andersson. 2017)

 Spin up halted well before breakup frequency (Theoretical lower limit on max breakup f ~1200 Hz - BH et al. 2018)
 Disk/magnetosphere interaction? (White & Zhang 1997, Andersson, Glampedakis, BH & Watts 2006, BH & Patruno 2011,

Patruno, D'Angelo & BH 2012, D'Angelo 2016, Bhattacharya & Chakrabarty 2017)

GWs!: "mountains", unstable modes, magnetic deformations

 $\epsilon \approx 10^{-7}$

(Bildsten 1998, Andersson 1998, Cutler 2002, BH et al. 06, BH et al. 08, Payne & Melatos 05)

Old Recyled Neutron Stars

<u>Cutoff of distribution at ~ 730 Hz</u>

Fastest Neutron Star: 716 Hz

(Chakrabarty et al 2003, Patruno 2010, Papitto et al. 2014, Patruno, BH and Andersson. 2017)

Spin up halted well before breakup frequency (Theoretical lower limit on max breakup f ~1200 Hz - BH et al. 2018)

Disk/magnetosphere interaction?

(White & Zhang 1997, Andersson, Glampedakis, BH & Watts 2006, BH & Patruno 2011, Patruno, D'Angelo & BH 2012, D'Angelo 2016, Bhattacharya & Chakrabarty 2017)

GWs!: "mountains", unstable modes, magnetic deformations

(Bildsten 1998, Andersson 1998, Cutler 2002, BH et al. 06, BH et al. 08, Payne & Melatos 05)

<u>Thermal mountains</u>

Mountains from 'wavy' capture layers in crust

Deep crustal heating 'consistent' with cooling observations from X-ray transients.

(Haensel & Zdunik 1998, 2008) (Degenaar et al 2015)

Magnetic mountains

In accreting systems Magnetic field distorted by the accretion flow

Possibility of confining a 'mountain'

(Payne & Melatos 2005, Priymak et al. 2011, Mukherjee et al. 2012)

Crustal failure can transfer strain to the quadrupole

(Fattoyev et al. 2018)

The spin of Low Mass X-ray Binaries

Spin distribution is bimodal, with a cutoff around 540 Hz

Slow population widely distributed around 300 Hz

Ms Radio Pulsar distribution is NOT bimodal, but consistent with the slow population

(Patruno, BH & Andersson 2017)

The spin of Low Mass X-ray Binaries

Histogram and theoretical densities

(Patruno, BH & Andersson 2017)

Which are the fast pulsars?

27% faster!

- 6 NXPs, 4 AMXPs (30 in the full sample)
- Two 'transitional' pulsars
- one is J1023+0038: well monitored in radio and X-ray

$$\dot{\nu}_{\rm radio} = -2.3985 \times 10^{-15} \ {\rm Hz/s}$$

$$\dot{\nu}_{\rm xray} = -3.0413 \times 10^{-15} \ {\rm Hz/s}$$

Problem for accretion torque models....

So what about GWs?

Can GWs explain the additional spin-down?

 $\dot{\nu}_{\rm diff} = -6.428 \times 10^{-16} \ {\rm Hz/s}$

(BH & Patruno 2017)

Mountain:

$$Q_{22} \approx 4.4 \times 10^{35} \text{ g cm}^2$$

 $\varepsilon \approx 5 \times 10^{-10} \quad h \approx 6 \times 10^{-28}$

So what about GWs?

Thermal Mountain:

$$Q_{22} \approx 3 \times 10^{35} \left(\frac{\delta T_q}{10^5 \text{ K}}\right) \left(\frac{E_{th}}{30 \text{ MeV}}\right)^3 \text{ g cm}^2$$

(Ushomirsky, Cutler & Bildsten 2000)

 $\delta T\approx 5\times 10^6 {\rm K}\,$ after 1 month of accretion

(BH & Patruno 2017)

What about other pulsars? Mountain accumulates during outbursts Does it dissipate between outbursts?

Source	$^{\nu}$ (Hz)	d (kpc)	$\langle \dot{M} \rangle$ (10 ⁻¹⁰ M _{\odot} yr ⁻¹)	Δt (d)	Ref.
SAX J1808.4–3658	401	3.5	4	30	Patruno et al. (2009)
XTE J1751–305	435	7.5	10	10	Miller et al. (2003)
XTE J1814–338	314	8	2	60	this work
IGR J00291+5934	599	5	6	14	Falanga et al. (2005)
HETE J1900.1-2455	377	5	8	3000	Papitto et al. (2013b)
Aql X-1	550	5	10	30	Güngör, Güver & Eksi (2011)
Swift J1756.9–2508	182.1	8	5	10	Krimm et al. (2007)
NGC 6440 X-2	204.8	8.5	1	4	this work
IGR J17511–3057	244.9	6.9	6	24	Falanga et al. (2011)
IGR J17498–2921	400.9	7.6	6	40	Falanga et al. (2012)
Swift J1749.4-2807	518	6.7	2	20	Ferrigno et al. (2011)
EXO 0748-676	552	5.9	3	8760	Degenaar et al. (2011)
4U 1608–52	620	3.6	20	700	Gierlinski & Done (2002)
KS 1731–260	526	7	11	4563	Narita, Grindlay & Barret (2001)
SAX J1750.8–2900	601	6.8	4	100	this work
4U 1636–536	581	5	30	pers.	this work
4U 1728-34	363	5	5	pers.	Egron et al. (2011)
4U 1702–429	329	5.5	23	pers.	this work
4U 0614+091	415	3.2	6	pers.	Piraino et al. (1999)

(BH, Priymak, Patruno, Oppenoorth, Melatos & Lasky 2015)

Thermal mountains

If deformations of J1023+0038 are typical, persistent sources promising

(BH, Priymak, Melatos, Lasky, Patruno & Oppenoorth, 2015)

Magnetic mountains

Only systems with buried fields $B \approx 10^{12}$ G detectable Possible cyclotron features

(BH, Priymak, Patruno, Oppenoorth, Melatos & Lasky 2015)

<u>Conclusions</u>

Young pulsars may be spun down by r-modes...evidence for braking index n=7 in J0537?

Magnetic field sets a minimum ellipticity.

In mature pulsars $\epsilon \approx 10^{-8} - 10^{-6}$?

Are gravitational waves setting the speed limit for recycled old pulsars? persistent systems good targets