Tests of general relativity with gravitational wave observations

Gianluca M Guidi Università di Urbino "Carlo Bo" - INFN Firenze

Gemma, 4 June 2018, Lecce

First access to the strong-field dynamics of spacetime

Before the direct detection of gravitational waves:

- Solar system tests: weak-field; dynamics of spacetime itself not being probed
- Binary neutron stars: relatively weak-field test of spacetime dynamics

Direct detection of GW from binary black hole mergers:

- Genuinely strong-field dynamics
- (Presumed) pure spacetime events

Yunes, Yagi, Pretorius, Phys. Rev. D 94, 084002 (2016)

Coalescence of binary neutron stars and black holes

Complementary information from different events

□ GW150914: merger at the most sensitive detector frequencies

- □ GW151226: long inspiral in sensitive frequency band
- \Box GW170104: twice as far away \rightarrow study GW propagation over large distances
- \square GW170814: triple detection \rightarrow study GW polarization
- □ GW170817: GW speed, equivalence principle

Exploiting the phenomenology of inspiral, merger, ringdown

□ Post-Newtonian description of inspiral

- Expansion of e.g. gravitational wave phase in powers of (v/c)
- Do the coefficients depend on masses, spins as predicted by GR?
- □ Plunge and merger
 - Most dynamical regime
- □ Consistency between inspiral and post-inspiral regimes
- □ Ringdown
 - quasi-normal mode spectrum
- □ Anomalous propagation of gravitational waves over large distances
 - Massive graviton, violations of local Lorentz invariance
- □ Tidal effects during inspiral
 - "Black hole mimickers": boson stars, dark matter stars, gravastars, ...
 - If less compact than neutron stars, can have large tidal effects

Residual data after subtraction of best-fitting waveform

- After subtraction of best-fitting semianalytic waveform for GW150914, is residual data consistent with noise?
- Signal-to-noise ratio in residual data related to detection SNR through a fitting factor:

 $SNR_{res}^2 = (1 - FF^2) FF^{-2} SNR_{det}^2$

- $\Box SNR_{det} = 25.3^{+0.1}_{-0.2}$ SNR_{res} ≤ 7.3
 - \rightarrow FF \geq 0.96
- □ GR violations limited to 4%, at least for effects that can not be absorbed into redefinition of physical parameters

LSC+Virgo, Phys. Rev. Lett. 116, 221101 (2016)

□ Phenomenological frequency domain waveforms

 \Box Parameters p_i multiplying different functions of frequency in 3 regimes

□ Introduce parameterized deformations of the waveform by replacing $p_i \rightarrow (1 + \delta \hat{p}_i) p_i$ and letting $\delta \hat{p}_i$ vary freely (along with masses, spins, extrinsic parameters)

 \Box Do this for each of the p_i in turn

 Accurate model-independent tests Li et al., Phys. Rev. D 85, 082003 (2012)

GW150914: short inspiral, but merger well visible

GW151226: long inspiral, merger at higher frequency

Combine results from multiple sources

LSC+Virgo, Phys. Rev. X 6, 041015 (2016)

GW150914 + GW151226 + GW170104

First-ever bounds on post-Newtonian coefficients (inspiral dynamics) beyond leading order

LSC+Virgo, Phys. Rev. Lett. 116, 221101 (2016)

First-ever bounds on post-Newtonian coefficients (inspiral dynamics) beyond leading order

LSC+Virgo, Phys. Rev. Lett. 116, 221101 (2016)

First-ever bounds on post-Newtonian coefficients (inspiral dynamics) beyond leading order

First-ever bounds on post-Newtonian coefficients (inspiral dynamics) beyond leading order

Will, Phys. Rev. D 57, 2061 (1998)

□ Dispersion of gravitational waves?

$$E^{2} = p^{2}c^{2} + m_{g}^{2}c^{4} \qquad \lambda_{g} = h/(m_{g}c) \qquad \Phi_{\rm MG}(f) = -(\pi Dc)/[\lambda_{g}^{2}(1+z)f]$$

• New bound on graviton Compton wavelength and mass:

$$N_{a} > 1.6 \text{ x } 10^{13} \text{ km}$$
 $m_{a} < 7.7 \text{ x } 10^{-23} \text{ eV/c}^{2}$

- 3 orders of magnitude better than binary pulsar dynamical bound
- Factor of a few better than (static) Solar system bound

Anomalous dispersion of gravitational waves (Violating local Lorentz invariance):

 $E^2 = p^2 c^2 + A p^\alpha c^\alpha$

□ Modified group velocity:

$$v_g/c = 1 + (\alpha - 1)AE^{\alpha - 2}/2$$

□ Modification to the gravitational wave phase:

$$\tilde{h}_{\rm GR}(f) = \tilde{A}(f; \vec{\vartheta}_{\rm GR}) e^{i\Psi(f; \vec{\vartheta}_{\rm GR})}$$

$$\tilde{h}(f) = \tilde{A}(f; \vec{\vartheta}_{\rm GR}) e^{i \left[\Psi(f; \vec{\vartheta}_{\rm GR}) + \delta \Psi(f; \vec{\vartheta}_{\rm GR}, X_{\rm modGR}) \right]}$$

Mirshekari et al., Phys. Rev. D 85, 024041 (2012)

Anomalous dispersion of gravitational waves (Violating local Lorentz invariance):

 $E^2 = p^2 c^2 + A p^{lpha} c^{lpha}$

LSC+Virgo, Phys. Rev. Lett. 118, 221101 (2017)

Consistency between inspiral and post-inspiral

□ General relativity predicts relationship between

- Masses and spins of component objects
- Mass and spin of final object

□ Relationship can be extracted from numerical simulations

• Accurate analytical fits (Healy et al. 2014)

Compare inferred values from inspiral and post-inspiral

LSC+Virgo, Phys. Rev. Lett. 116, 221101 (2016)

Ringdown

□ Ringdown regime: Kerr metric + linear perturbations

 \Box Ringdown signal is a superposition of quasi-normal modes with characteristic frequencies $\omega_{\rm Imn}$ and damping times $\tau_{\rm Imn}$

□ Numerical relativity: linearized regime valid from ~10 M

• For GW150914: 10 M ~ 3.5 milliseconds

Evidence for a least-damped quasi-normal mode from fitting damped sinusoid:

LSC+Virgo, Phys. Rev. Lett. 116, 221101 (2016)

Alternative polarization states

Will, Living Rev. Relativ. 17, 4 (2014)

□ In GR, GW have only tensor polarization

□ Need a larger network of detectors!

□ GW170814: with three detectors we tested

Tensor vs pure scalar: 1000 / 1

Tensor vs pure vector: 200 / 1

Isi & Weinstein (2017)

Tests with GW170817 + GRB170817A

 Delay of a few second after a propagation over one hundred millions ly

$$t_{
m EM} - t_{
m GW} = 1.74 \pm 0.05\,
m s$$

Constraint on speed of gravity

$$-3\times 10^{-15} \leqslant \frac{v_{\text{GW}}-v_{\text{EM}}}{v_{\text{EM}}} \leqslant +7\times 10^{-16}$$

Shapiro time delay of GW and EM in the MW gravitational potential

 $-2.6 imes10^{-7}\leqslant\gamma_{\mathsf{GW}}-\gamma_{\mathsf{EM}}\leqslant1.2 imes10^{-6}$

LSC+Virgo, Astrophys. J. Lett. 848, L13 (2017)

Overview

□ First tests of the genuinely strong-field dynamics of pure spacetime

- No evidence for violations of GR
- □ Tests of coalescence dynamics
 - Parameterized tests in inspiral, "intermediate", and merger/ringdown regimes
 - Consistency of masses and spins between inspiral and post-inspiral
- □ Tests of gravitational wave propagation
 - Bound on graviton mass
 - Bounds on violation of local Lorentz invariance
 - Bound on the deviation of the speed of gravity from the speed of light
 - Violation of equivalence principle

Into the future

Combining information from increasing number of detections

Assuming GR is correct, bounds on violations will improve roughly with square root of number of sources

□ Can also actively look for GR violations by Bayesian model selection:

 $O_{
m GR}^{
m modGR}\equiv rac{P(\mathcal{H}_{
m modGR}|d,{
m I})}{P(\mathcal{H}_{
m GR}|d,{
m I})}$

 $egin{aligned} & {}^{(N_T)}\mathcal{O}_{ ext{GR}}^{ ext{modGR}} \ &= rac{P(\mathcal{H}_{ ext{modGR}}|d_1,\ldots,d_\mathcal{N}, ext{I})}{P(\mathcal{H}_{ ext{GR}}|d_1,\ldots,d_\mathcal{N}, ext{I})} \end{aligned}$

Agathos et al., Phys. Rev. D **89**, 082003 (2012)

Searching for exotic compact objects

□ "Black hole mimickers":

- Boson stars
- Dark matter stars
- Gravastars
- Firewalls, fuzzballs
- ...

□ Find through:

• Anomalous tidal effects during inspiral

```
Giudice et al., JCAP 1610, 001 (2016)
```

Cardoso et al., arXiv:1701.01116

• Anomalous ringdown spectrum

Meidam et al., Phys. Rev. D 90, 064009 (2014)

• Gravitational wave "echoes" after ringdown

Cardoso et al., Phys. Rev. D 94, 084021 (2016)

The far future

- Einstein Telescope (ET) may observe O(10⁵) binary coalescences per year
 - Combine information from all sources
 - Ultra-high precision measurements
 of PN and other coefficients
- □ Equation of state of black hole mimickers?
- □ Precision observations of ringdown
- Intermediate and extreme mass ratio inspirals with ET and LISA
 - Test of the no-hair theorem

□ ...

- Dynamics of non-adiabatic inspiral
- Observing BBH in both the LISA and ET bands
 - Low and high frequency content of the same signal

Sesana, Phys. Rev. Lett. 116, 231102 (2016)

□ Combined bounds from GW150914 and GW151226:

LSC+Virgo, Phys. Rev. X 6, 041015 (2016)

□ Anomalous dispersion of gravitational waves (Violating local Lorentz invariance): $E^2 = p^2 c^2 + A p^{\alpha} c^{\alpha}$

\Box In terms of characteristic length scales: $\lambda_A = hcA^{1/(\alpha-2)}$

TABLE IV. 90% credible level lower bounds on the length scale λ_A for Lorentz invariance violation test using GW170104 alone.

	A > 0	A < 0
lpha=0.0	$1.3 imes 10^{13}$ km	6.6×10^{12} km
lpha=0.5	1.8×10^{16} km	$6.8 imes 10^{15}$ km
lpha=1.0	$3.5 imes 10^{22}$ km	$1.2 imes 10^{22}$ km
lpha=1.5	$1.4 \times 10^{41} \text{ km}$	$2.4 imes 10^{40} \ \mathrm{km}$

LSC+Virgo, Phys. Rev. Lett. **118**, 221101 (2017)

Binary Pulsars vs GWs

- EM observations of binary pulsars give $dP_{OP}/dt \,^{\sim}\,10^{-14}$ - 10^{-12}

Confirm GW luminosity at leading order with excellent precision

- Most relativistic (J0737-3039) has almost constant $dPorb/dt\;vorb/c$ $\sim 2x10^{-3}$ and t_C \sim 85 Myrs

- GW150419 had $dP_{OPD}/dt \sim -0.1$ (30Hz) to -1 (132 Hz)

Just before merger the two BHs orbited each other 75 times/sec

- $v_{orb}/c \sim 0.5$ just before merger