Prospects for joint GW and gamma-ray EM observations of binary neutron star mergers

Barbara Patricelli^{1,2}

¹Scuola Normale Superiore di Pisa ²INFN - Sezione di Pisa

> GEMMA Workshop June 4 - 7, 2018

in collaboration with: M. Razzano, A. Stamerra, G. Cella E. Pian, M. Branchesi, F. Fidecaro

 $\mathcal{O} \mathcal{A} \mathcal{O}$

Outline

Introduction

Prospects for joint GW and EM detections: Fermi

- The Fermi gamma-ray telescope
- Simulation of NS-NS mergers
- GW detections and sky localizations
- GRB simulations
- Results

Extension to very-high-energies: Prospects for CTA

- The Cherenkov Telescope Array
- The GW and EM simulations
- The observational strategy
- Results

Conclusions

Introduction

Prospects for joint GW and EM detections: Fermi Extension to very-high-energies: Prospects for CTA Conclusions

The era of multi-messenger astronomy has begun!

GW170817:

- coincident short GRBs detected in gamma rays
- an optical/infrared/UV counterpart (the kilonova) has been detected
- X-ray and radio counterparts have been identified
- HE (E > 100 MeV) and VHE (E > 20 GeV): no significant emission has been found

(Abbott et al. 2017 and refs. therein)

Next challenge:

detection of HE and VHE gamma rays associated with GW signals

The Fermi gamma-ray telescope simulation of NS-NS mergers GW detections and sky localizations RB simulations Results

Prospects for joint GW and EM detections: Advaced LIGO, Advanced Virgo and *Fermi*

The Fermi mission

The Fermi gamma-ray telescope imulation of NS-NS mergers W detections and sky localizations RB simulations lesults

Two instruments:

GBM

- Energy range: 8 keV to 40 MeV
- FOV: \sim 9.5 sr
- Sky localization: overall median error for short GRBs of 8°

• LAT

- Energy range: 20 MeV to 300 GeV
- FOV: ∼ 2.4 sr
- Sky localization: $r_{68} \sim 0.1^\circ$ at 10 GeV on-axis

if GBM detects a GRB above a fixed threshold*, *Fermi* automatically slews to move the GRB into the LAT FOV

* The on-board trigger threshold is \sim 0.7 photons cm $^{-2}$ s $^{-1}$

The Fermi gamma-ray telescope Simulation of NS-NS mergers GW detections and sky localizations GRB simulations Results

Step 1: simulation of the NS-NS mergers

NS-NS mergers

- NS-NS merger rate is dominated by the contribution from Milky-Way-like galaxies (see e.g. O'Shaughnessy et al. 2010)
- Maximum distance set at 500 Mpc
- $\rho_{galaxies}$ =0.0116 Mpc⁻³ (Kopparapu et al. 2008)
- Simulated galaxies are uniformly distributed
- Merging systems: Synthetic Universe¹ (Dominik et al. 2012)
- Bimodal distribution in metallicity: half at Z=Z_ \odot and half at Z=0.1·Z_ \odot (Panter et al. 2008)
- Merger rates: (Dominik et al. 2012) $\begin{cases}
 \text{"Optimistic" models: V12A (Z=Z_{\odot}) and V2A (Z=0.1 \cdot Z_{\odot})} \\
 \text{"Pessimistic" models: V12B (Z=Z_{\odot}) and V1B (Z=0.1 \cdot Z_{\odot})}
 \end{cases}$

¹www.syntheticuniverse.org

The Fermi gamma-ray telescope Simulation of NS-NS mergers GW detections and sky localizations GRB simulations Results

Step 2: GW detections and sky localizations

GW signals

- We assume non-spinning systems
- Random inclination of the orbital plane with respect to the line of sight (θ)
- TaylorT4 waveforms (Buonanno et al. 2009)

GW detections

- Detector configurations (aLIGO and AdV): 2016-2017 ("O2") and 2019+ (design), see Abbott+Patricelli et al. 2016
- Independent duty cycle of each interferometer: 80 % (Abbott+Patricelli et al. 2016)
- Matched filtering technique (Wainstein 1962)
- Trigger: at least 2 detectors
- Combined detector SNR threshold: 12
- GW localization with BAYESTAR (Singer et al. 2014)

The Fermi gamma-ray telescope Simulation of NS-NS mergers GW detections and sky localizations **GRB simulations** Results

Step 3: GRB simulations - prompt emission

Assumptions:

- All the NS-NS mergers are associated with a short GRB
- Only on-axis GRBs are considered $(\theta < \theta_j)$
- GRB jet opening angles: $0.3^{\circ} \le \theta_j \le 30^{\circ}$ (Panaitescu et al. 2011, Rezzolla et al. 2011, Coward et al. 2012)
- "fiducial" θ_j : 10° (Fong et al. 2014, Duffell et al. 2015)

Detection of the prompt emission with Fermi/GBM:

- GBM FOV: 9.5 sr
- GBM duty cycle: 50 %
- Is GBM sensitive enough to detect the simulated GRBs? \Rightarrow GBM sensitivity vs GRB brightness

The Fermi gamma-ray telescope Simulation of NS-NS mergers GW detections and sky localizations GRB simulations Results

Step 3: GRB simulations - prompt emission detection with GBM

Brightness

It is the 64-ms peak photon flux P_{64} from the prompt emission in the 50-300 keV energy band

$$L[1\text{keV} - 10\text{MeV}] = 4\pi D_{L}^{2} \frac{\int_{1\text{keV}}^{10\text{MeV}} \text{EN(E)dE}}{\int_{50\text{keV}(1+z)}^{300\text{keV}(1+z)} \text{N(E)dE}} P_{64}$$

Lowest brightness measured by Fermi-GBM

P^{meas}_{64,Min}=0.75±0.25 ph/cm2/s (VizieR Online Data Catalog)

Lowest expected brighness for the simulated short GRBs

- Minimum L: 2 10⁵⁰ erg/s (lowest value for short GRBs with known redshift, see Waderman & Piran 2015)
- Maximum distance: 500 Mpc (z~0.12)
- N(E): Band function with the typical parameters of Fermi-GBM short GRBs (see Nava et al. 2011, Waderman & Piran 2015)

 $\Rightarrow \mathsf{P}_{64,\mathrm{Min}} \sim 5 \text{ ph cm}^{-2} \text{ s}^{-1} > \mathsf{P}_{64,\mathrm{Min}}^{\mathrm{meas}}$

 \Rightarrow GBM is sensitive enough to detect all the on-axis GRBs in our sample

The Fermi gamma-ray telescope Simulation of NS-NS mergers GW detections and sky localizations **GRB simulations** Results

Step 3: GRB simulations - afterglow emission

GRB 090510 as a prototype: unique short GRB to show an extended emission (up to 200 s) at high energies (up to 4 GeV), as detected by Fermi-LAT (Ackermann et al. 2010, De Pasquale et al. 2010)

Light curve:

$$F(t) = A \frac{(t/t_{\text{peak}})^{\alpha}}{1 + (t/t_{\text{peak}})^{\alpha+\omega}}$$

Spectrum:

$$N(E) \propto E^{\beta}, \qquad \beta = -2.1$$

(De Pasquale et al. 2010)

- We assumed θ_j=10°;
- We corrected the light curve to take into account the distance of the sources with respect to GRB 090510;
- We re-scaled the light curve considering the following range of isotropic energy: $10^{49} \text{ ergs} \leq E_{\gamma} \leq 3.5 \times 10^{52} \text{ ergs}$ (Ghirlanda et al. 2010, Fong et al. 2015)

The Fermi gamma-ray telescope Simulation of NS-NS mergers GW detections and sky localizations GRB simulations Results

Step 3: GRB simulations - afterglow emission detection with LAT

We estimated the integration time $t_{\rm f}$ needed for the simulated GRBs to have a fluence equal to the Fermi-LAT sensitivity:

- We extrapolated this sensitivity to the energy range 0.1-300 GeV
- We choose the value of sensitivity corresponding to a GRB localization of 1 deg, for β=-2 and Theta=0.

http://www.slac.stanford.edu/exp/glast/groups/canda/archive/p7rep_v15/lat_Performance.htm

We considered two cases:

- no latency (the source is already in the FOV of the LAT)
- 10 minute latency

The Fermi gamma-ray telescope Simulation of NS-NS mergers GW detections and sky localizations GRB simulations Results

Results: GW detections - I

Configurations	Work	Number of BNS detections	% of BNS with Loc.	% of BNS with Loc.	% of BNS with Loc.	% of BNS with Loc.
////		(yr ⁻¹)	\leq 5 deg ²	$\leq 20 \text{ deg}^2$	$\leq 100 \text{ deg}^2$	$\leq 1000 \text{ deg}^2$
	This work*	0.001 - 0.9	3	9	16	70
2016-2017 (O2)	Singer et al. 2014 ²	1.5	2	8	15	
	Abbott+Patricelli et al. 2016	0.006-20	2	14		
2019+ (design)	This work	1 (0.04 - 15)	5	21	50	90
	Abbott+Patricelli et al. 2016	0.2-200	> 3-8	> 8-30		-)

Patricelli et al. 2016. JCAP, 11, 56

*Rates from Patricelli et al. 2016 have been rescaled to take into account the 8 months duration of O2

²These estimates refer to the 2016 scenario.

The Fermi gamma-ray telescope Simulation of NS-NS mergers GW detections and sky localizations GRB simulations Results

Results: GW detections - II

"Optimistic" merger rate (Dominik et al. 2012): 830 Gpc⁻³ yr⁻¹ After the detection of GW170817: (320 - 4740) Gpc⁻³ yr⁻¹ (Abbott+Patricelli et al.

> 2017) ↓

Configurations Number of BNS % of BNS % of BNS % of BNS % of BNS Work with Loc. with Loc. with Loc. with Loc detections (vr^{-1}) $< 5 \text{ deg}^2$ $\leq 20 \text{ deg}^2$ $< 100 \, deg^2$ $< 1000 \, deg^2$ This work* 0.9 (0.3 - 5) 9 16 70 3 2016-2017 (O2) Singer et al. 2014 1.5 2 8 15 Abbott+Patricelli et al. 2016 2 14 0.006-20 2019+ (design) This work* 15(7 - 86)5 21 50 90 Abbott+Patricelli et al. 2016 > 3-8 > 8-30 0.2-200

Patricelli et al. 2016. JCAP, 11, 56

The Fermi gamma-ray telescope Simulation of NS-NS mergers GW detections and sky localizations GRB simulations Results

Results: joint HE EM and GW detections - prompt emission with GBM

θ_{j}	EM and GW 2016-2017	EM and GW design
deg	yr^{-1}	yr^{-1}
0.3	$< 10^{-3}$	$< 10^{-3}$
- /		
10	0.03 (0.01 - 0.2)	0.5 (0.2 - 2.9)
30	0.1 (0.04 - 0.6)	2.6 (1 - 15)

Patricelli et al. 2016, JCAP, 11, 56

Evidence that GRB170817A was an atypical GRB?

*Rates from Patricelli et al. 2016 have been rescaled to take into account the 8 months duration of O2 and the estimate of BNS merger rate after GW170817

The Fermi gamma-ray telescope Simulation of NS-NS mergers GW detections and sky localizations GRB simulations Results

Results: joint HE EM and GW detections - afterglow emission with LAT

no latency			
E_{γ}	EM and GW 2016-2017	EM and GW design	
(ergs)	(yr^{-1})	(yr^{-1})	
3.5×10^{52} 1×10^{49}	0.05 (0.01 - 0.3) 0.05 (0.01 - 0.3)	0.9 (0.3 - 5) 0.6 (0.2 - 3.4)	

10 min latency

Integration Time (s)	E_{γ} (ergs)	EM and GW 2016-2017 (yr^{-1})	EM and GW design (yr^{-1})
10	3.5×10^{52} 1×10^{49}	0.03 (0.01 - 0.2) $< 10^{-3}$	$0.1 (0.04 - 0.6) < 10^{-3}$
10 ²	3.5×10^{52} 1×10^{49}	$\begin{array}{l} 0.05 \ (0.02 \ \ 0.3) \\ < 10^{-3} \end{array}$	0.9 (0.3 - 5) $< 10^{-3}$

Rates consistent with independent estimates by Fermi-LAT collaboration, arXiv:1710.05450

*Rates from Patricelli et al. 2016 have been rescaled to take into account the 8 months duration of O2 and the estimate of BNS merger rate after GW170817

The Cherenkov Telescope Array The GW and EM simulations The observational strategy Results

Extension to very-high-energies: Prospects for CTA

The Cherenkov Telescope Array The GW and EM simulations The observational strategy Results

The Cherenkov Telescope Array (CTA)

A ground-based observatory for gamma-ray astronomy at very-high energies

Southern Hemisphere Site Rendering; image credit: G. Perez, SMM, IAC

- two arrays: one in the Northern hemisphere, one in the Southern hemisphere
 ⇒ full-sky coverage
- CTA baseline array in the North (South):
 - 4 (4) Large Size Telescopes (LSTs); \sim 20 GeV \sim 200 GeV
 - 15 (25) Medium Size Telescopes (MSTs); \sim 100 GeV \sim 10 TeV
 - 0 (70) Small Size Telescopes (SSTs); \sim 5 TeV \sim 300 TeV
 - \Rightarrow large energy coverage

The Cherenkov Telescope Array The GW and EM simulations The observational strategy Results

Why CTA?

- coincident observational schedule with GW detectors at design sensitivity (CTA completion expected by 2024)
- large FoV (LST: 4.5 deg)
- survey key science programs
- Rapid response (≤ 30 s) of LST
- Very high sensitivity

https://www.cta-observatory.org/science/cta-performance/

The simulations

- Sample of NS-NS mergers and associated GW signal and detection from Patricelli et al. 2016 (associated with the "optimistic model")
- Only on-axis GRBs are considered; $\theta_j = 10^\circ$;
- GRB 090510 as a prototype, with focus on the afterglow emission;
- EM flux extrapolated to higher energies, assuming a power-law with exponential cut-off spectrum: Ec=30 GeV, 100 GeV.

Several CTA pointings will be needed to cover the GW skymap...

which is the best observational strategy?

Proposed strategy

Step 1:

The observational strategy

We estimate the observing time t^i_{obs} needed for the simulated GRBs to have a fluence equal to the CTA sensitivity, considering a set of consecutive pointings

$$\begin{split} t^{i}_{start} = & (t_{slew} + t_{latency}) + t^{i-1}_{obs} \\ t^{i}_{stop} = & t^{i}_{start} + t^{i}_{obs} \\ i = 1, \ ..., \ n_{p} \end{split}$$

 \Rightarrow This will tell us the maximum number of observations $n_{\rm p}$ that we can do and the observing time of each observation

Proposed strategy

Step 2

We constructed a 2D grid of CTA pointings:

Image credit: Dubus et al. 2013

- multiple evenly-spaced rows of pointings
- Angular step: 2°

(maximum step that provides nearly uniform sensitivity coverage, see Dubus et al. 2013) The Cherenkov Telescope Array The GW and EM simulations The observational strategy Results

Step 3

Intersection between the GW skymap and the 2D grid of pointings, taking into account $n_{\rm p}$

 \Rightarrow percentage of the GW skymap that can be covered with n_p observations

The Cherenkov Telescope Array The GW and EM simulations The observational strategy Results

GRB simulations at VHE

Observation time:

- We considered a latency to send the GW alert t_1 =3 minutes
- We considered a slewing time $t_{slew}=30 \text{ s} (LSTs)$

Sensitivity:

- We estimated the sensitivity with the function *cssens* of ctools³ (Knödlseder et al. 2016)
- We used the instrument response functions (IRFs)⁴ "North_0.5h" and "South_0.5h" (zenith angle=20 deg)
- We considered a 5 σ (post-trials) detection threshold

CTA Duty cycle:

 \bullet We assumed a conservative duty cycle of \sim 10 %

³http://cta.irap.omp.eu/ctools/; in this work we used the ctools version 1.4.0 ⁴https://www.cta-observatory.org/science/cta-performance/

The Cherenkov Telescope Array The GW and EM simulations The observational strategy **Results**

Results: GW skymap coverage with CTA pointings

E _{iso} (ergs)		cut-off (GeV)	% of events Obs. region =90 %	% of events Obs. region \geq 50 %
10 ⁴⁹	_	30	< 1	< 1
		100	1.5	1.9
10 ⁵⁰	-	30	8.8	12.2
		100	18.0	28.8
10 ⁵¹	_	30	59.7	74.5
		100	73.0	85.1
3.5×10 ⁵²	-	30	99.9	100
		100	99.9	100

Patricelli et al. 2018, JCAP, 5, 56

The Cherenkov Telescope Array The GW and EM simulations The observational strategy Results

Results: joint GW and EM detection rates

E _{iso} (ergs)	cut-off (GeV)	EM and GW (yr^{-1})
10 ⁴⁹	30 100	$< 10^{-3} < 0.001$
10 ⁵⁰	30 100	0.01 0.03
10 ⁵¹	30 100	0.06 0.07
3.5×10 ⁵²	30 100	0.08 0.08

Rates are expected to increase if:

- Higher CTA duty cycle is considered (e.g., observations during moonlight)
- Higher BNS merger rates are considered (see Abbott+Patricelli et al. 2017)

For most energetic events up to 1 event per year!

- Higher θ_j is assumed
- Off-axis GRBs are included

Patricelli et al. 2018, JCAP, 5, 56

Conclusions

We presented a comprehensive study of the prospects for joint GW and EM detection of BNS mergers with gamma-ray space and ground-based instruments

- Fermi represents a promising instrument to identify the EM counterpart of GW events
- The observational strategy proposed for EM follow-up at VHE is highly efficient and CTA will be potentially able to detect the VHE emission of GRBs associated with GW events.
- The observational strategy proposed for CTA can be generalized to other telescopes and/or other EM emission models

More joint GW and gamma-ray EM observations in the future will shed light on the physics of compact objects and on their association with GRBs.

Backup slides

Test case

- SNR=18; 90 % credible region \sim 56 deg 2
 - $E_{\rm ISO} = 10^{51}$ ergs; $E_{\rm cut-off}$ =100 GeV

GW skymap and CTA tilings

Event and Significance (TS) Map

Patricelli et al. 2018, arXiv:1801.05167

B.Patricelli Prospects for joint GW and γ-ray EM observations of NS-NS mergers

Post-trial significance distribution

- Different observations of a source with a given intrinsic spectrum could yield different statistical significances, due to fluctuations in the number of detected photons.
- We evaluated these fluctuations repeating the simulation 1000 times

 \Rightarrow As expected, the distribution is well described by a Gaussian with mean (post-trials) $\mu \sim 5!$

Patricelli et al. 2018, arXiv:1801.05167

Improvement with respect to "standard" strategies (constant obs time)

Improvement in the GW sky coverage $\downarrow \\
increase in the joint GW and EM$ detection rates!example:- - E_{iso}=10⁵⁰ ergs, cut-off=100 GeVthe rate increase by a factor ~ 2

Patricelli et al. 2018, arXiv:1801.05167

CTA coverage vs Distance

The distance of the source possibly provided in the GW alert can be used to further optimize the observational strategy

Patricelli et al. 2018, arXiv:1801.05167

B.Patricelli

Prospects for joint GW and γ -ray EM observations of NS-NS mergers