SEARCH FOR NEUTRINO COUNTERPARTS TO GRAVITATIONAL WAVE EVENTS WITH ANTARES

Alexis Coleiro on behalf of the ANTARES collaboration

GEMMA workshop | Lecce, June 7th 2018

SEARCH FOR NEUTRINO COUNTERPARTS TO GRAVITATIONAL WAVE EVENTS WITH ANTARES

Alexis Coleiro on behalf of the ANTARES collaboration

> Multi-messenger program of ANTARES

> Search for neutrino counterpart to GW events

GEMMA workshop | Lecce, June 7th 2018

- ► Different ways to detect high-energy ν
- \blacktriangleright One way particularly useful in astronomy: observation of muons produced in CC interaction of ν_{μ}

μ

Down-going events

р

Atmospheric muons (background) 10⁸-10¹⁰ / yr (~1-10/sec for ANTARES)

μ

μ

Down-going events

р

Atmospheric muons (background) 10⁸-10¹⁰ / yr (~1-10/sec for ANTARES) Up-going events

Atmospheric neutrinos (background) 10³-10⁵ / yr (a few/day for ANTARES)

μ

Down-going events

р

Atmospheric muons (background) 10⁸-10¹⁰ / yr (~1-10/sec for ANTARES)

μ

Up-going events

Atmospheric neutrinos (background) 10³-10⁵ / yr (a few/day for ANTARES)

Cosmic neutrinos (signal) ~1-2/yr for ANTARES ~several/yr for KM3NeT/IceCube

Neutrino telescopes suitable to look for transient sources: continuously monitoring 2π sr (at least)

<u>Multi-messenger</u> studies of <u>transient & variable</u> sources:

- increase the sensitivity + discovery potential (reduce the background)
- increase the statistical significance (requiring joint detection)

TIME CORRELATIONS WITH ICECUBE EVENTS

- > Search for time correlations with IceCube HESE and high-energy v_{μ} tracks
- Test transient origin of IceCube events
- ► No significant correlation (largest excess: 89% p-value post-trial)
- Limits on the fluence w.r.t. flare duration
- ► Constraint on the spectral index of the neutrino spectrum (assuming ~sec. transient emission

SEARCH FOR COUNTERPARTS TO ICECUBE ALERTS

GRAVITATIONAL WAVE FOLLOW-UPS

- ➤ Online searches for every GW alert during O2: result communicated to LIGO/Virgo partners
- ► « Offline » optimized search (jointly with IceCube & Auger) for:
 - ► GW150914 (Adrian-Martinez et al., PRD 93, 12, 2016)
 - ► GW151226 + LVT151012 (Adrían-Martinez et al., PRD 96, 2, 2017)
 - ► GW170104 (Albert et al., EPJC 93, 77, 2017)

GRAVITATIONAL WAVE FOLLOW-UPS

- ➤ Online searches for every GW alert during O2: result communicated to LIGO/Virgo partners
- ► « Offline » optimized search (jointly with IceCube & Auger) for:
 - ► GW150914 (Adrian-Martinez et al., PRD 93, 12, 2016)
 - ► GW151226 + LVT151012 (Adrían-Martinez et al., PRD 96, 2, 2017)
 - ► GW170104 (Albert et al., EPJC 93, 77, 2017)

- First analysis above ANTARES horizon (feasible for transients)
- ► $E_{iso} < 4 \ 10^{54} \text{ erg} (4 \ 10^{53} \text{ at } \delta = -17^{\circ})$

GW170817

Gravitational waves

WHY LOOKING FOR NEUTRINOS IN « REAL TIME » ?

Neutrino telescopes can:

- significantly constrain the location of the source
- filter subthreshold events

WHY LOOKING FOR NEUTRINOS IN « REAL TIME » ?

WHY LOOKING FOR NEUTRINOS ?

- ► Could constrain the structure of the relativistic outflow:
 - ► Presence of a cocoon ?
 - ► Chocked jet ?

ONLINE ANALYSIS

NEUTRINO DETECTORS

Albert et al. (ANTARES, Auger, IceCube & LIGO/Virgo), ApJL, 850, 2 (2017)

OFFLINE ANALYSIS

- ► Following the identification of the counterpart (host galaxy): refined and extended search
- ► Joint work with Auger and IceCube
- Search over ± 500 s and ± 14 days

ANTARES:

- Dedicated calibrations (positioning, timing and efficiency)
- ► Track + shower events (all flavors)

> Optimized analysis for a 3σ discovery over ±500 s

RESULTS

► Over ±500 s around the merger:

Albert et al., ApJL, 850, 2 (2017)

No counterpart over +14 days \succ

CONSTRAINTS ON THE SOURCE

 Rebrightening in the light curve after the initial emission spike

- Neutrino emission related to the prompt/ extended high-energy emission
- ► Extended emission of GRB: lower Γ → higher meson production efficiency
- Assuming relativistic jet viewed off-axis

CONSTRAINTS ON THE SOURCE

- Neutrino emission related to ejecta material from the merger over several days
- ➤ Assumes formation of a magnetar → powers relativistic wind

ANTARES ALERTS: 150901A

An active X-ray star

TATOO & GAMMA-RAY BURSTS

- 104 alerts with early (<24h) optical follow-up analyzed (01/2010 -07/2017)
- 24 follow-ups with delay <1min (best: 17s)
- no transient candidate associated to neutrinos
- Constraints on origin of individual neutrinos
- ► GRB origin unlikely

TATOO & GAMMA-RAY BURSTS

- ➤ 14 X-ray follow-ups (06/2013 08/2017)
- ► delay of 5-6 h on average
- no transient candidate associated to neutrinos
- Constraints on origin of individual neutrinos
- ► GRB origin unlikely

PERSPECTIVES & CONCLUSIONS

- Multi-messenger astronomy era ! Gravitational waves + neutrino diffuse flux
- ► Further constrain physical processes at play in high-energy sources
- Increases discovery potential of neutrino telescopes (by observing the same source with different probes)
- Refines the efficiency of the detection, (taking advantage of relaxed cuts in timedependent analysis)
- ► Need of wide field-of-view multi-wavelength facilities !