

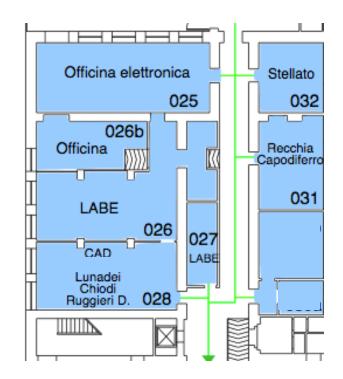
Laboratorio di elettronica responsabile Fabrizio Ameli tel. +39 0649914223 - fax +39 0649914320

Electronics R&D INFN-RM1

INFN Roma LabE

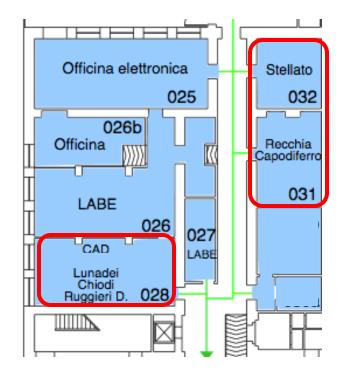
General topics and staff competencies

SEP 27-28, 2018 | INFN-GE (Genova), Italy

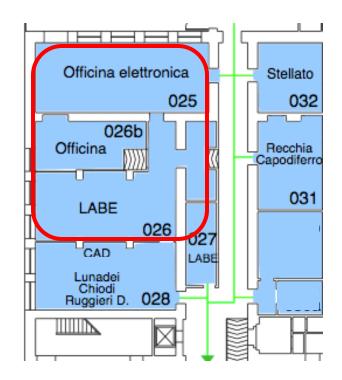

- 3. Other activities
 - 4. Summary

1.

- 5. Case study: Waveboard
 - 6. Conclusions



- The INFN-Roma LABE supports the experiments' staff with electronics design and prototypes
- The area is divided in 4 different main rooms:
 - CAD + Service (R&D and IT)
 - LABE + workshop
 - Electronics workshop
 - > experimental set-up
 - "free" access
- dedicated instrumentation for fast prototyping of 2layer PCB
- Advanced inspection instruments for assembly and reworking of SMD parts of almost any size
- The electronic workshop is equipped with oscilloscope, generators and power sources as well as a thermal chamber


- The INFN-Roma LABE supports the experiments' staff with electronics design and prototypes
- The area is divided in 4 different main rooms:
 - CAD + Service (R&D and IT) •
 - LABE + workshop
 - Electronics workshop
 - > experimental set-up
 - "free" access
- dedicated instrumentation for fast prototyping of 2-layer PCB
- Advanced inspection instruments for assembly and reworking of SMD parts of almost any size
- The electronic workshop is equipped with oscilloscope, generators and power sources as well as a thermal chamber

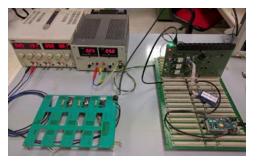
27, Sept 2018

- The INFN-Roma LABE supports the experiments' staff with electronics design and prototypes
- The area is divided in 4 different main rooms:
 - CAD + Service (R&D and IT)
 - LABE + workshop
 - Electronics workshop
 - > experimental set-up
 - "free" access
- dedicated instrumentation for fast prototyping of 2layer PCB
- Advanced inspection instruments for assembly and reworking of SMD parts of almost any size
- The electronic workshop is equipped with oscilloscope, generators and power sources as well as a thermal chamber

- The INFN-Roma LABE supports the experiments' staff with electronics design and prototypes
- The area is divided in 4 different main rooms:
 - CAD + Service (R&D and IT)
 - LABE + workshop
 - Electronics workshop
 - > experimental set-up
 - "free" access

- Advanced inspection instruments for assembly and reworking of SMD parts of almost any size
- The electronic workshop is equipped with oscilloscope, generators and power sources as well as a thermal chamber

PCB Milling machine


Digital Stereo Microscope (7x ÷ 120x)

- The INFN-Roma LABE supports the experiments' staff with electronics design and prototypes
- The area is divided in 4 different main rooms:
 - CAD + Service (R&D and IT)
 - LABE + workshop
 - **Electronics workshop**
 - experimental set-up
 - "free" access

- dedicated instrumentation for fast prototyping of 2layer PCB
- Advanced inspection instruments for assembly and reworking of SMD parts of almost any size
- The electronic workshop is equipped with:
 - Benches with reworking stations
 - oscilloscopes ۲
 - generators and power sources
 - climatic chamber

List of Experiments using LabE facility:

- **CSN 1**:
 - ATLAS
 - LHCb
 - PADME
 - MEG
- CSN 2:
 - KM3
 - DARKSIDE

• CSN 3:

- F00T
- JLAB12 (BDX and Others)
- CSN 5:
 - CHIR2
 - BULLKID

BULLKID

dark<mark>side</mark>

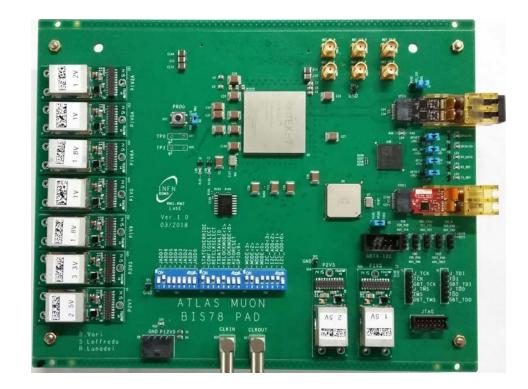
:H.I.R.O.N.E

PCB design

• The LHCb muon Front-End electronic control system

- Board overview
 - 3 multilayer (up to 10) designs
 - matched impedance wires (1-80-4000 Mbps)
 - Standard VME 6U fit

- Components overview
 - Custom CERN RadHard ASIC (GBT family)
 - low density Flash-based FPGA (IGL002)
 - Optical transceiver (SFP form factor)



PCB design

• The ATLAS muon PAD

- Board overview
 - 1 multilayer (up to 14) designs
 - matched impedance wires (@ 360Mb/s, @6Gb/s)
 - Custom form factor

- Components overview
 - Custom CERN RadHard ASIC (GBT family)
 - High density FPGA (Kintex-7)
 - Optical transceiver (SFP form factor)
 - High speed connectors (Molex??)

PCB design

BDX experiment Front End readout (WaveBoard)

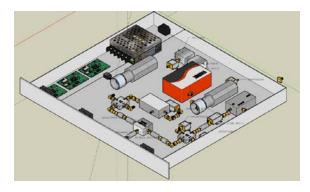
- Board overview
 - multilayer design
 - matched impedance wires
 - Standard VME 6U fit

- Components overview
 - 12 channel digitizer 14 bit@250 MHz
 - SiPM HV on board
 - COTS SOM (Zynq Based)
 - White Rabbit Enabled
 - Optical TRx (SFP form fact.)

- SMASH (CHIR2)
 - Very small for factor
 - Aptina 1Mpix MT9x cmos sensor
 - MIPI interface (sub-LVDS up to 750Mbps)
 - Single micro-HDMI

0 ಁಁಁಁ Lemo output from amplifier

- PADME
 - Fast output SiPM (SENSL)
 - Fast Preamp electronics
 - 4-ch for time-of-flight measurements
 - Front end evaluation board



- DaVinci probe (CHIR2)
 - 6-ch SiPM readout
 - Miniaturized form factor
 - Micro coaxial cables
 - Endoscopic applications
 - Mate with WaveBoard

Other activities

Other electronics R&D topics not related with PCB CAD

- Multitony (Bullkid)
 - two 19" 1U sub-rack
 - 2.4 and 1 GHz
 - 200 MHz bandwidth
 - Ultra-low noise DC-DC modules
 - Ethernet control module

- FOOT
 - 6 SiPM
 - series connection
 - 1readout channel
 - Mate with WaveBoard

- Acoustic-WTS (MEG)
 - wire tension measurements of MWPC
 - Audio amplifiers
 - Adaptive filtering for 50Hz interference reduction
 - Mate with a NI DAQ (16-ch ADC)

Торіс	Manpower
High-speed digital PCB design	5
SMD/SMT reworking	3
Analogue design (discrete components)	1
Fast PCB prototyping (no BGA, max 2 layers)	2
Firmware development (C++)	1
FPGA development	1
Lab IT	1
Cabling	3
Mechanics for electronics	1

Case study: WAVEBOARD

- Using OrCAD modularity, the project was split in different modules
- Each module has been independently developed from schematic to routing and layout
- In the end, the modules have been merged together in the final board
- PROS:
 - ✓ Object-oriented PCB development
 - Easy to modify (correct one module, apply to all)
 - ✓ Skills differentiation
 - Design Reuse (building a common library)
 - ✓ Board generated by script which places modules
- CONS:
 - ✓ Need to conform with special constraints (eg, layers number)
 - Requires all to use the same tool

Conclusions

- Lesson learned from the "Waveboard experience" we understood the benefits of a common library of modules (schematic + routing):
 - ✓ design reuse and modularity, in particular the design gains:
 - Flexibility
 - ✤ Reliability
 - Time to data
 - ✓ Focusing on specific tasks (dc-dc layout, firmware development, etc.)
 - ✓ Know-how increase
 - ✓ Manpower optimization
 - ✓ Team building

We believe that a central repository of libraries, sources and manuals can really contribute to speed up the design of the equipment for experiments

- Of course this do not come for free:
 - It is required to adhere to a common design standard
 - Each user has access to projects: protection required
 - CAD and Software tool may need specific licensing features

Laboratorio di elettronica responsabile Fabrizio Ameli tel. +39 0649914223 - fax +39 0649914320

Thank you!

Questions?