

Hotel Hermitage, La Biodola, Isola d'Elba

International Advisory Committee

F. Fidecaro (Pisa), Co)-chair
------------------------	---------

- S. Meshkov (Caltech), Co-chair
- R. Adhikari (Caltech)
- M. Ando (Tokyo)
- S. Ballmer (Syracuse)
- M. Barsuglia (APC)

- G. Cagnoli (LMA)
- D. Coyne (Caltech)
- M. Evans (MIT)
- S. Fairhurst (Cardiff)
- A. Freise (Birmingham)
- G. Hammond (Glasgow)
- J. Harms (GSSI)
- S. Hild (Glasgow)
- S. Kawamura (Nagoya)

- K. Kokeyama (Tokyo)
- A. Lazzarini (Caltech)
- H. Lueck (AEI)
- E. Majorana (INFN Roma) S. Vitale (MIT)
- D. McClelland (ANU)
- C. Miller (Maryland)

- M. Punturo (Perugia)
- D. Reitze (Caltech)
- B. Sathyaprakash (Penn State)
- R. Schnabel (Hamburg)
- J. Van den Brand (NIKHEF)
- R. Ward (ANU)
- B. Willke (AEI)

28 males , 1 female

Disclaimer

- The following reflects only my personal views of the conference.
- Talks were all interesting
- For each talk⁽¹⁾ I selected the slide which I found most significant or representative.
- For parallel sessions I could only attend some of the talks
- (1) only talks which slides where uploaded in the indico page in time

Mo AM 1: Science for 3G Multi-messenger¶ Convener: Marica Branchesi (GSSI)

Take-home message

3G era - multimessenger perspective

- **NSNS/NSBH** from single event investigation to large statistical analysis compact binary population, SGRBs, nucleosynthesis, ...
- great opportunities for yet undetected sources
 - increased potential to fully understand GW emission from galactic SNe (but not increased event rates)
 - much better prosepects to detect continuous GW signals from isolated and accreting NSs and GW transients from bursting/glitching NSs

Mo.AM1

Multimessenger astrophysics with neutron stars: looking ahead towards the 3G era Speaker: Dr Riccardo Ciolfi (Istituto Nazionale di Fisica Nucleare) L. Conti - GWADW2019

The contribution of EM searches

- We are very confident that we do not miss any SN event within 10-20 Mpc
- BUT: SN event timing becomes crucial
- A reverse approach: the EM transient triggers an aposteriori, targeted search for the GW signal in the interferometric data.
- The ET era will greatly enhance this business.
- That is the are were we (meaning EW people) should work.
- Requires a higher coordination level: not yet there.
- LSST era: see talk by A. Palmese

Mo. AM1 Gravitational wave cosmology with large galaxy surveys Speaker: Antonella Palmese (Fermilab)

Mo AM 2: Science for 3G Conveners: Katerina Chatziioannou (Flatiron), Salvo Vitale (LIGO MIT), Yuri Levin (Flatiron)

Mo.AM2
Low frequency and populations¶
Speaker: Salvo Vitale (LIGO MIT)

Mo.AM2
High Frequency

Speaker: Michael Coughlin (California Institute of Technology)

Mo.AM2

Thomas P. Sotiriou - GWAWD, Elba, May 20th 2019

Fundamental physics with 3G detectors Speaker: Thomas Sotiriou (University of Nottingham)

Mo PM 3: Upgrades to present facilities Convener: Stefan Ballmer (Syracuse University)

AdV+ project is divided into 2 phases

- Phase I
 - > 40-50W input power
 - signal recycling mirror
 - Newtonian noise cancellation
 - frequency depend squeezing
 - preparatory work for phase II
- Phase II
 - > large mirrors implementation

beyond 2022

next 2 years

this presentation

.

Mo.PM3 AdV+

Speaker: Jerome Degallaix (Laboratoire des Matériaux Avancés - LONRIS) GWADW2019

A+ Enhancements

- Improved Coatings
- Frequency Dependent Squeezing
- Boosted Optical Efficiency for Deeper Squeezing
 - High-efficiency Faraday isolators
 - Adaptive Wavefront Control (US/Australia)
- Balanced Homodyne Readout (UK)
 - Several improvements, SRC control, backscatter (see G1800459)
- Enlarged Beamsplitter and Suspension (UK)
- Improved Suspension Fibers (UK)
 - see G1900942

McCuller (MIT, LIGO), GWADW 2019, G1900980

3

Mo.PM3

A+

Speaker: Lee McCuller (MIT)

Sensitivity

- No plans for competitive sensitivities
- In 2015, we decided to NOT pursue this route ->
 - or any other major sensitivity upgrades
- Pursuing technologies applicable to high frequency sensitivity

Mo.PM3 GEO600

Speaker: James Lough (AEI Hannover)

Four upgrades examples

- 1. Low frequency
- 2. High frequency
- 3. 40kg test masses
- 4. Freq. dependent squeezing

Figure 48: Sensitivity curves for bKAGRA and upgrade candidates. Sensitivity curves for Advanced LIGO (aLIGO), A+ and bKAGRA are shown for comparison [464].

20/05/2019 GWADW 10

Mo.PM3
KAGRA+ upgrade plan
Speaker: Matteo Leonardi (NAOJ)

Mo PM 4: Newtonian Noise Convener: Jenne Driggers (Caltech)

Newtonian Noise

Mo.PM4
NN cancellation in underground GW detectors
Speaker: Francesca Badaracco (GSSI)

Infrasound NN cancellation Speaker: Donatella Fiorucci (CNRS)

Seismic metamaterials and their applications to reducing Newtonian Noise

Speaker: Dr Brittany Kamai (Caltech)

ET seismic NN estimation Speaker: Jan Harms (GSGC)

Driggers

GWADW Summary, 24 May 2019

Mo.PM4
ET seismic NN estimation
Speaker: Jan Harms (GSGC)

Water NN

Full dimension:

- 1) Capilary / gravity waves
- 2) Transportation
- 3) Compression / sound

Localized perturbation:

- 4) Vortices / turbulence
- 5) Channel-floor to watersurface interaction
- 6) Flow around obstacles

Water flow and waves are both too slow for (1) - (3) to matter (exponential cutoff at very low frequencies), even if the water flows closely to the test mass.

Perturbation produced by vortices and other structures included in (4) – (6) in the NN band are supported by small water volumes and associated NN is very likely insignificant, but one should look at this more carefully.

GWADW, May 20, 2019

3

Tu AM 1: Thermal Noise Conveners: Bram Slagmolen (The Australian National University), Stuart Reid (University of the West of Scotland)

Summary

- Building blocks + staffing established over first 18 months
 - deposition tools
 CSU, UCB, UH, Strathclyde, Sannio, Montreal, LL
 - characterization tools
 high throughput RT mechanical loss: Caltech, Syracuse
 additional cryo loss tools: SU, U Glasgow
 - computational tools: SU, UF scattering data -> structures structure-property relations
 - fabrication concepts
 high-T deposition
 doping suppression of crystallization
 nano-layer suppression of crystallization
- Further connections emerging between theory and exp't
- Design concepts tested
 - multi-material coatings
- · Using theory to direct experimental choices

Tu.AM1

A+ timeline, plans, and requirements (plus mention of LIGO India plans)
Speakers: Martin Fejer (Stanford University), Michael Zucker

L. Conti - GWADW2019

Absorption

The **Urbach energy** is a parameter which quantifies the homogeneity of the structure by absorption investigation, probing a multi-range structural organization. **Annealing and doping** modify the structure leading to a more organized/homogeneous atomic dispositions, reducing the mechanical loss angle.

Tuesday 21/5/19

M. Lorenzini - GWADW 2019, Isola d'Elba, Italy

17

Tu.AM1 Virgo, AdV+ and future plans/requirements Speakers: Matteo Lorenzini (GSSI), Paola Puppo (ROMA1)

4.Summary

1. KAGRA+ thermal noise

Thermal noise itself in white paper does not matter.

Kazuhiro's comment: Smaller absorption mirror or higher thermal conductivity sapphire fibers are necessary to simplify assembly.

2. Thermo-optic noise

Thermal noise interferometers can give constrain on α and β of coating, which are important parameters to evaluate thermo-optic noise.

At room (cryogenic) temperature, thermo-optic noise could be an issue in near future (is not problem at all). 37

Tu.AM1

KAGRA and future plans for suspensions and optics in KAGRA¶ L. Conti - GWADW2019 Speaker: KAZUHIRO YAMAMOTO (University of Toyama)

Tu.AM1

Thermal noise in 3G instruments¶

Speaker: Harald Lueck (AEI Hannover (MPI f. gravitational Physics ^{L. Conti} -GWADW2019 Inst. f. Grav.physics Leibniz U

Tu AM 2: Upgrades to Current Facilities Convener: Stefan Ballmer (Syracuse University)

Current squeezing performance

 About 4.5 dB of squeezing (and 15 dB of anti-squeezing) down to ~30 kHz

13

Tu.AM2
Status of the filter cavity experiment at TAMA
Speaker: Eleonora Capocasa (NAOJ)

Work packages

Five research themes and one management theme have been identified this time.

PI of Project: Hammond (UK) / Raychaudhury (India)

- WP1: Project management (Hammond, Raychaudhury + representatives from all Institutes)
- WP2: Data analysis and Modelling (Heng, Andersson, Sutton, Raychaudhury)
- WP3: Low thermal noise coatings and suspensions (Reid, Hammond, Rajalakshmi, Prabhakar, Raman)
- * WP4: Interferometer modelling & simulation (Daw, Rapol)
- WP5: Entrepreneurial Activities (Gibson, Raychaudhury, Indian Trade Embassy representatives)
- * WP6: Outreach Activities (Vecchio, Souradeep)

Objectives delivered through research exchanges, industrial engagement, educational initiatives and outreach activities.

Tu.AM2

The UK-India collaborative efforts - the Newton Bhabha project Speaker: Mariela Masso Reid

Science goals

- Low phase noise interferometry with cryogenic silicon mirrors of up to ~100kg
- Providing a flexible testbed to explore various combinations of cryogenic temperatures and laser wavelength
- Investigating the interplay of thermal noise, quantum noise and control noises in the sub 10Hz region
- Various tests of cryogenic issues (liquids vs cryo-coolers; stable control of mirror temperature; contamination handling of mirror surfaces; low power actuators ...)
- · Testbed for new control techniques and sensors

Nikhef

B. Swinkels - ET pathfinder - GWADW Elba

5

Current Status

- Seismic Attenuation System (AEI-SAS)
 - Suspension platform interferometer (SPI)
 - Optical levers
- Pre-Stabilised Laser
 - Power stabilisation (aLIGO style PD array)
 - Frequency stabilisation (10 m suspended reference cavity)
- Single Arm Test
 - 100 g pilot optics (wire suspension)
- Control and Data System (CDS)

21.05.2019

GWADW, Isola d'Elba

LIGO-G1900990

Tu.AM2 Plans for AEI 10m prototype Speaker: David Wu

Tu PM 3: Space technology for the future Convener: Seiji Kawamura (Nagoya University)

From LPF to LISA

- In LISA all the TMs will be drag-free along their x-axis.
- Force gradients and Tilt-To-Length (TTL) need to be calibrated.
- Inertial forces in LISA could enter the signal through actuation crosstalk
- Force glitches need to be understood both as instrumental origin that for discrimination techniques
- TDI mixes many signals and introduces correlations that makes even instrument noise characterization non trivial

Tu.PM3 From LISA Pathfinder to LISA, a gravitational waves space-based observatory Speaker: Daniele Vetrugno (Istituto Nazionale di Fisica Nucleare)^{L. Conti - GWADW2019}

Study Office Near-term Goals

- Develop "menu" of possible NASA contributions
 - Payload systems and subelements (req. tech development)
 - Spacecraft components
 - Ground segment contributions
 - Operations contributions
 - Science support
 - ...
- Assess each contribution
 - · Compatibility with partners/ease of interface
 - US interest
 - NASA capabilities
 - Cost
- Work with NASA HQ, ESA, Consortium to consolidate final roles and responsibilities

John W. Conklin, GWADW, Elba, ITALY, 20 April 2019

(11

Tu.PM3
LISA technology development in the U.S.
Speaker: John Conklin (University of Florida)

DECIGO -roadmap

Tu.PM3

The Japanese space gravitational wave detector DECIGO/B-DECIGO
Speaker: Mitsuru Musha (Instutute for Laser Science, UniversityLofeelection)

Conclusions

A robust method of charge management using photoelectrons with the following advantages:

- Infrequent or no charge measurement
- Precise timing of UV illumination not required
- Power stability of UV source not critical
- No need for the accurate determination of the UV illuminated surface properties
 - Quantum efficiency
 - · Angle dependence of photoemission
 - · Reflectivity
- No precise processing or maintenance of the UV illuminated surfaces required
- Simple in-flight fine-tuning of system for unforeseen changes

The PCM method relies upon the:

- Stability of the surface properties of materials (after aging)
- Straightforward biasing by either dc bias sleeves/plates or AC modulation of the UV-LEDs

We AM 1,2 A: Thermal Noise and Coatings Convener1: Riccardo Bassiri (Stanford University) Convener2: Gianpietro Cagno (University of Lyon)

Conclusions and Open Questions

- Are low TLS in ultrastable a-Si (and IMC) the "exception that proves the rule" of universal low T glass properties? Or, is there a new rule "universal glass properties" at low T are perhaps due to the universal nature of liquid quenching and domain growth/correlation length growth/boundaries?
- Is low TLS related to growth near T_K? (If (and only if) surface mobility during growth is high). Fragile glasses have T_K near T_g, where mobility is high, so low TLS would be correlated with fragility
- Or is low TLS related to nature of bonding: overconstrained (tetrahedral Si) versus underconstrained e.g. Si-O-Si bonds in a-SiO₂ and TLS in a-Si due to nanovoids
- Silica, alumina show increased density and reduced loss at low T with increased T_{growth}; not as much as a-Si, but not yet at T_{growth}= 0.8T_g.
- Tantala shows reduced losses at low T with increased growth T; not as much as a-Si, and likely at T_{growth} = 0.8T_g; annealing big effects, T_{growth} not stabilizing structure.
- · Low losses at room temperature in all are not well correlated with low losses at low T
- Route to low room T losses is to find a material like a-SiO₂ with strong well formed bonds in liquid state (i.e. strong glass) and moderately high T_q
- Route to low low T losses is fragile glass with moderate T_g and suppress crystallization

We.AM1a
Two Level Systems and Ultrastable Glasses
Speaker: Frances Hellman (UC Berkeley)

Molecular Dynamics – Mechanical Spectroscopy (MD-MS)

We.AM1a
Mechanical Loss Calculations
Speaker: Francesco Puosi (University of Pisa and INFN Pisa)

MBE

AlGaAs

- Developed technology ✓
- Optical performance √
- Grown on GaAs wafers X
- Requires transfer X

AlGaP

- Mechanical loss √
- Lattice matched to silicon √
- Not well-developed X
- Optical properties X
- Growing on 200kg scale optics X

Others?!?!

AlGaN

Growth on Al2O3, GaN or AlN.

Issues of quality of films on Al2O3 cited by Novikov et al. Journal of Vacuum Science & Technology B 34, 02L102 (2016)

Common challenges:

- electro-optic and piezoelectric effects (initial discussion Abernathy T1400726)
- scaling (Cole estimated ~\$40M for GaAs substrate + MBE + bonding tool)
- Mechanical loss at RT on crystalline substrates
- Scatter and absorption evaluation, effect of defect, large area
- Who is doing the work? (how much will industry drive, how much do we need to do)?

discussion...

14

We.AM2a
Crystalline Coatings
Speaker: Stuart Boid

Speaker: Stuart Reid (SUPA, University of Strathclyde)

We.AM2a Alloys, nanolayers and multi-material coatings Speaker: Slawek Gras (MIT)

We PM 3 B: kHz detection Convener: Denis Martynov (University of Birmingham)

Finding the state-space rep for transfer func.

We.PM3B
On the physical realisation of an (unstable) optical filter
Speaker: Joe Bentley

Th AM 1: Squeezing, Topology, Quantum Information Convener: Haixing Miao (University of Birmingham)

Th.AM1
Squeezing status from LIGO & VIRGO
Speakers: Fiodor Sorrentino (GE), Haocun Yu

Th.AM1
Einstein-Podolsky-Rosen (EPR) squeezing experiments from AND Hamburg 19
Speakers: Jan Gniesmer (University of Hamburg), Min Jet Yap (Australian National University)

Optomechanical (ponderomotive) squeezing at room temperature Thomas Corbitt (LSU)

GWADW 2019

N. Aggarwal, T. Cullen, J. Cripe, G. D. Cole, R. Lanza, A. Libson, D. Follman, P. Heu, T. Corbitt, N. Mavalvala, arXiv:1812.09942.

Th.AM1 Optomechanical squeezing experiment at LSU Speaker: Thomas Corbitt (LSU)

Current status

- · Chip design being finalised
- Ongoing study on coupled cavity control (modelling+experiment)
- First aLIGO CDS standalone rack built in Birmingham
- · Practising optomechanics with the existing chip
- · Design of the experimental layout ongoing

Th.AM1 Enhancing the optomechanical interaction with a coupled cavity Speaker: Artemii Dmitriev (University of Birmingham) L. Conti - GWADW2019

Th AM 2: 3G Light Sources and Optics Convener: Benno Willke (Albert Einstein Institute Hannover)

Th.AM2
Fiber amplifiers for 3G GWDs
Speaker: Michael Steinke

Diode-pumped MO: 50mW, compact

- Pump using 450mW 1.55μm single-mode fiber-coupled diode laser
- Single longitudinal mode, linewidth < 100 kHz
- Output power 70mW max, limited by pump power
- Pump-power dependent frequency tuning of 620 kHz/mA (bandwidth?)

Th.AM2

Tm:fiber lasers and optical absorption at 2um Speaker: Peter Veitch (University of Adelaide)

Th.AM2
Squeezed light at 2 um
Speaker: Vaishali Adya (Australian National University)

First Results: OPO Wavelength Tuning

- measured OPO output spectra for different temperatures of the nonlinear crystal
- degeneracy reached at around 70°C (higher than expected, needed some redesign of our OPO to reach those temperatures)

Bruker Equinox 55 FT-IR Spectrometer (picture from UWLAX, ours looks similar)

•

Th.AM2
3G light sources at 2um
Speaker: Dr Sebastian Steinlechner (University of Hamburg)

Th PM 3: Commissioning 2G Convener: Viviana Fafone (ROMA2)

Livingston Noise Budget

Driggers, LIGO-G1900963

GWADW, 23 May 2019

4

Th.PM3 LIGO

Speaker: Jenne Driggers (Caltech)

Conclusions

- Commissioning (sensitivity) progresses happen in jumps;
- Efficiency is made of several ingredients (non exhaustive list):
 - Person power not necessarily on site;
 - · Ahead planning that will be updated in time;
 - Flexibility issues or new needs must be considered on the fly.

A. Rocchi - AdV co

- Collaborations are incredibly rich reservoirs of knowledge!
- One last point:
 - Commissioning teams should meet more often;
 - · Last workshop was in 2017 in KAGRA;
 - What about a workshop at every LVC meeting?

In the end, everything will be fine, If not, it means it is not the end yet.

AdV best BNS range from May 7 (C8) to July 30 (ER12)

Pre-02

GWADW, 23/05/2019

Th.PM3 **VIRGO**

Brav

Speaker: Alessio Rocchi (ROMA2)

Th.PM3 KAGRA

Speaker: Yutaro Enomoto (ICRR, University of Tokyo)

Th PM 4: Backscatter Modeling/Interferometer Simulation Convener: Andreas Freise (University of Birmingham)

Comparing to LISO

- LISO files in Zero can be compared to LISO automatically
 - zero liso my-circuit.fil --compare
 - Runs LISO directly and overlays results to Zero
- Automatic tests against hundreds of LISO files identical within 10^{-.5} relative/absolute tolerance

Th.PM4

Zero: a modern circuit simulation tool¶ 10m

Speaker: Sean Leavey (AEI Hannover)

Conclusion

- Stray-light is an old enemy of GW interferometric antennas
 - It comes from a diversity of possible defects
 - It can probe seismically excited mechanical structures and recombine with the ITF main beam burying GW signals
 - It is difficult to simulate
 - It is ineherently non-linear
- Despite huge efforts, it threatens the achievement of design sensitivity, in particular at low frequency
- Further advances in prediction, mitigation and monitoring are needed
- New materials with lower BRDF are to be explored for 3rd gen, and possibly chose a site that is...

21 GWADW 2019

Th.PM4
Scattered light in Virgo
Speaker: Francesco Fidecaro (PI)

Conclusions

- Still useful to use analytic calculation to search parameter spaces, find solutions
- Useful to check all cases of chosen realization through simulation
 - Need tools to help here
- Diffuse scatter more a geometric problem, but plugs into optical sensitivities (determinable through incoherent simulation)
 - Is diffuse modeling fully separable?
 - Backscatter not separable, but also less geometric.
 - Specular scatter geometric, is it separably modellable

- (squeezed) shotnoise-limited field sensitivity sufficient for output backscatter calculations
 - Radiation Pressure effect "ignorable" (must use worst case)
 - (but does not relax reqs. W.R.T. SN.)
- Unmodelled sensing noise isn't necessarily a scatter problem, but (more total) controls modeling may prevent design flaws.
 - Want to drive this point for future ASC design

McCuller GWADW 2019

14

Light Baffles and Beam Pipe Design for Gravitational Wave De

- Reflections on a helical baffle send light in an infinite helical path along the beam pipe, which is always hidden from the mirrors.
- Light is effectively totally absorbed without a chance of scattering towards the mirrors.
- This removes the requirement that the pipe surfaces are dark.
- Spiral baffles also do not need to be dark.
- · Shiny hydrophobic surfaces can be implemented
 - · To reduce surface scattering on the baffles themselves
 - To reduce the vacuum water load in the pipe, the bake-out requirements and its costs.

8

Th.PM4 Light Baffles and Beam Pipe Design for Gravitational Wave Detectors Speaker: Stefano Selleri (University of Florence) L. Conti - GWADW2019

Fr AM 1: Errors Not To Be Made Again Convener: Harald Lueck (AEI Hannover (MPI f. gravitational Physics / Inst. f. Grav.physic session Leibniz Uni Hannover)) sub ject

The tunnel

- The tunnel has a dead-end at the end of the X-arm; not escapable.
- The number of portable air tanks (respirators) are limited.
- The volume of the tank would not be sufficient for 3-km running; usable for only 10-min walking, 5-min running. (ref: I take 12 mins by E-assisted bike + walk.)

Fr.AM1

The beauty of hindsight: a discussion of Mis-steps in KAGRA Speaker: Tomotada Akutsu (National Astronomical Observatory of Gapian WADW2019

Happy Ending

- Completed
 - » within budget
 - » on schedule
- Detections were made
- We are eager to do it again
 - » ...and make new mistakes

G1900929

1/

Fr.AM1

The beauty of hindsight: a discussion of Mis-steps in LIGO Speaker: David Shoemaker (MIT LIGO)

Fr AM 2: **Future Detectors and New** Infrastructures Convener: Stefan Hild (University of Glasgow)

- 2018-2019 Form the ET collaboration
- 2019-2020 ESFRI roadmap
 - Light TDR to be realised, refine CDR cost evaluation, key options to be selected, ESFRI proposal
- 2022 Site Selection
 - Technical/political activity
 - Requirements need to be compared with the site characteristics through an intense experimental activity in the next 3 years
- 2023 Full Technical Design Report
 - Cost definition
- 2025 Infrastructure realization start (excavation,)
- 2030 -2031 end of infrastructure construction, beginning of installation
- 2032+: installation / commissioning / operation

M.Punturo -ET - edited

16

Fr.AM2

Einstein Telescope

Speaker: Michele Punturo (PG), Harald Lueck (AEI)

Fr.AM2
Cosmic Explorer
Speaker: Matthew Evans (MIT)

Fr PM 3: Beyond GW IFO Conveners: Fiodor Sorrentino (GE), Matteo Barsuglia (APC-CNRS)

Real noise MF output

Fr.PM3

The search for gravitational-waves from white dwarf binaries in gravimetric and seismic data using Earth's normal modes resonance response in the mHz frequency band Speaker: Josipa Majstorovic

L. Conti - GWADW2019

Current Noise Performance

Fr.PM3
Status of TORPEDO torsion bar
Speaker: Bram Slagmolen (The Australian National University)

Readout Scheme

Coupled-cavity wave front sensor (new idea)

Compensate Gouy phase by auxiliary cavity

- ► HG10 mode resonates as well as HG00
- Induced HG10 is enhanced
 Higher sensitivity than normal WFS
 5×10⁻¹⁶ rad/√Hz @ 0.1 Hz

Optical configuration →

24. 05. 2019 GWADW2019 8 / 22

Fr.PM3
Status of TOBA torsion bar¶ 22m
Speaker: Satoru Takano (The University of Tokyo)

