3, 6, 10 Low Loss Needs (food for thought)

Lee McCuller

Rough numbers and thoughts for discussion of future squeezing levels

Loss

Be aware of this distinction:

Generated squeezing

- can be determined from calibration measurements
- Perfect relation between sqz and antisqz

Measured squeezing

Measured Antisqueezing

- Degraded by loss and dephasing
- Different effects in each characterizes degradation

What's Needed?

- Loss and Phase noise limits
- Can in principle achieve <10mRad (need to understand this in 2G..)
- But RMS includes Filter Cavity intrinsic mismatch
- Practically limited to injecting ~15db (speculating), unless >1 Filter cavity.

 $10\log(L+2\theta_{\rm RMS}^2)$

$10\log(L + 0.03)$

Can We Get below 7% Loss?

• 2G Loss budgets

- Faradays (being improved)
 - ~4%/pass now, 1%/pass developed, no idea about other wavelengths
 - Need 2-pass/filter-cavity, unless we move to bow-tie (same loss/m as linear)
 - Loss likely worse from finesse-sq backscatter cplg.
 - Currently can't assume no OFI, needed for SQZ injection
- OMCs
 - ~3% loss for LIGO, what about virgo double OMC config?
 - 3% not fundamental, can/should improve
- < << controls residuals>>>
 - ??% (not negligible)

- Pickoff mirrors
 - 1-2%. Needed for alignment sensing, could reduce SOME, but may trade with better ASC.
 - Rana: 0.2% possibly sufficient for WFS.shotnoise limit
- OPO
 - 1%, but consistent with chosen CLF mirror, could be less (LIGO, other AEI, GEO ANU more efficient?)
- Mode matching
 - Hoping for 0% in AUX (some hope)
 - How important in IFO?
- Intrinsic Scatter
 - Next slide

Tensions

- Low Frequency
 - (back) scatter vs.
 isolators
 - AUX D.O.F. residuals (alignment controls)
 - Usual consequences of RMS vs. DARM contamination
 - Helped by 3G seismic?
 - We don't yet know how much this is affecting 2G

- All/High Frequency
 - Contrast Defect
 - OMC Finesse
 - High power \rightarrow loss tension
 - High power \rightarrow dropping PRG
 - ARM loss cavity enhanced
 - L_1 = 50ppm, T_itm = .015% => 1.5% loss, but when PRG dropping..?
 - This is pessimistic, ignoring SRM
 - Less important for longer IFOs
 - Intrinsic (non-cavity enhanced)
 - ARM RT loss is limit
 - PhysRevX.9.011053 (Miao et al)