

GWADW - Elba - May 2019

Earth response model to GWs

Flat-Earth Model

Dyson, 1969

Non-rotating 1D Earth Model Ben-Menahem, 1983

Modelling Earth response to GWs from the binary systems

Induced response using Green tensor formalism (Ben-Menahem)

The normal modes summation and the perturbation theory

Induced forced spheroidal motion for one GW source and *l* = 2

 $s(a,t) = \sum_{k} \sum_{m} U_{k}(a) Y_{l}^{m}(\theta,\phi) \left[h_{+,c} \bar{g}_{+}^{m}(t,\Omega,\nu_{m}) f_{+}^{m}(\gamma(t),\alpha,\delta,\psi) + h_{\times,c} \bar{g}_{\times}^{m}(t,\Omega,\nu_{m}) f_{\times}^{m}(\gamma(t),\alpha,\delta,\psi) \right] \alpha_{k}(a)$

Model dependent (PREM)

- 24 multiplet groups Position of the station
 - Latitude and longitude

Binary parameters (catalog)

- m1, m2, d, ⁷ (inclination) Source-time function
 - Ω (GW frequency)
- ν_m (split eigenfrequency) f-function
 - γ(t) (GST), α (right ascension), δ (declination), ψ (polarization angle)

 $_{0}S_{2} - _{0}T_{2} - _{2}S_{1} - _{0}S_{3}$ $_{0}T_{3} - _{0}S_{4} - _{1}S_{2}$ $_{0}T_{5} - _{2}S_{2} - _{1}S_{3} - _{3}S_{1}$ $_{3}S_{2}$ $_{5}S_{1} - _{4}S_{2} - _{0}S_{10} - _{0}T_{11} - _{1}T_{5}$ $_{5}S_{2} - _{0}T_{14} - _{1}T_{7} - _{0}S_{13}$ $_{5}S_{4} - _{4}S_{5} - _{2}S_{10} - _{2}T_{4} - _{6}S_{2}$ $_{7}S_{2} - _{2}S_{0}$ $_{g}S_{2} \dots _{2}S_{2}$

Induced forced spheroidal motion for 14 GW sources and 24 normal modes

7

The matched filtering (MF)

$$x(t) = 4\operatorname{Re} \int_0^\infty \frac{\tilde{d}(f)\tilde{s}_{template}^*(f)}{S_n(f)} e^{i2\pi ft} df$$

$$\sigma_{h}^{2} = 4 \int_{0}^{\infty} \frac{|\tilde{s}_{template}(f)\tilde{s}_{template}^{*}(f)|}{S_{n}(f)} df$$

$$\rho(t) = \frac{|x(t)|}{\sigma_h}$$

Synthetic tests

$$s_{template}(t; p_i)$$

 $i = 1, \cdots, 7$

GW frequency Mass Distance Inclination **Right ascension** Declination **Polarization angle** Template bank for each p_i defined by catalog uncertainties.

Synthetic tests

Synthetic tests

- T1 testing the MF performance for a set of templates of one parameter where input signal and template match
- T2 testing the MF performance for a set of templates when input signal and used template **slightly mismatch**

Synthetic tests T1 - Mass

Synthetic tests T2 - noise + signal histograms

Observations - an example study

- Gravimeter data from the superconducting gravimeter
- Earthquakes, tides, atmospheric pressure effects removed-<u>coda remains</u>

Observations - an example study

- Gravimeter data from the superconducting gravimeter
- Earthquakes, tides, atmospheric pressure effects removed-<u>coda remains</u>

Observations - an example study

- Gravimeter data from SG instrument
- Removed earthquakes, tides, atmospheric oscillations <u>coda remains</u>

White vs real noise

White noise MF output

Real noise MF output

Summary

- We derive the Earth response to GW from the binary star for a 3D rotating Earth model;
- We include the effects of splitting and coupling within the normal modes by considering group coupling approximation;
- The metric perturbation is transformed from celestial to terrestrial reference system;
- Induced spheroidal motion is quadrupole (I=2);
- Pattern f-functions define which singlets are going to be excited;
- The modes with frequencies close to GW source frequencies, but not necessarily the closest, contribute the most to building the induced response of this particular source;
- The MF analysis is insensitive to the uncertainties in binary catalog;
- Detection with real noise is more challenging.

Summary

- We derive the Earth response to GW from the binary star for a 3D rotating Earth model;
- We include the effects of splitting and coupling within the normal modes by considering group coupling approximation;
- The metric perturbation is transformed from celestial to terrestrial reference system;
- Induced spheroidal motion is quadrupole (I=2);
- Pattern f-functions define which singlets are going to be excited;
- The modes with frequencies close to GW source frequencies, but not necessarily the closest, contribute the most to building the induced response of this particular source;
- The MF analysis is insensitive to the uncertainties in binary catalog;
- Detection with real noise is more challenging.

Thank you for your attention!

Induced quadrupole modes

$$\mathbf{s}_{k}(\mathbf{r},t) = \mathbf{s}_{k}(\mathbf{r})\left(h_{+,c}\bar{\mathbf{g}}_{+}(t)\mathbf{e}_{+} + h_{\times,c}\bar{\mathbf{g}}_{\times}(t)\mathbf{e}_{\times}\right) : \left[\left(\mu(a)U_{k}(a)a^{2} - \int_{r}\frac{\partial\mu}{\partial r}U_{k}(r)r^{2}dr\right)\int_{\Omega}\mathbf{e}_{r}\mathbf{e}_{r}Y_{l}^{m*}(\theta,\phi)d\Omega\right]$$
$$+ \left(\mu(a)\kappa^{-1}V_{k}(a)a^{2} - \int_{r}\frac{\partial\mu}{\partial r}\kappa^{-1}V_{k}(r)r^{2}dr\right)\int_{\Omega}\mathbf{e}_{r}\nabla_{1}Y_{l}^{m*}(\theta,\phi)d\Omega\right]$$

$$\mathbf{e}_{r}\mathbf{e}_{r} = \begin{bmatrix} \sin^{2}\theta\cos^{2}\phi & \sin^{2}\sin\phi\cos\phi & \sin\theta\cos\theta\cos\phi \\ \sin^{2}\theta\sin\phi\cos\phi & \sin^{2}\theta\sin^{2}\phi & \sin\theta\cos\theta\sin\phi \\ \sin\theta\cos\theta\cos\phi & \sin\theta\cos\theta\sin\phi & \cos^{2}\theta \end{bmatrix}$$

$$\begin{split} I_{1} &= \frac{2\sqrt{\pi}}{3} \delta_{I,0} \delta_{m,0} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{2}{3} \sqrt{\frac{\pi}{5}} \delta_{I,2} \delta_{m,0} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \\ &+ \sqrt{\frac{2\pi}{15}} \delta_{I,2} \begin{bmatrix} \delta_{m,2} + \delta_{m,-2} & -i\delta_{m,2} + i\delta_{m,-2} & -\delta_{m,1} + \delta_{m,-1} \\ -i\delta_{m,2} + i\delta_{m,-2} & -\delta_{m,2} - \delta_{m,-2} & i\delta_{m,1} + i\delta_{m,-1} \\ -\delta_{m,1} + \delta_{m,-1} & i\delta_{m,1} + i\delta_{m,-1} & 0 \end{bmatrix} \end{split}$$

Source-time function

$$\bar{g}_{+}(t) = \frac{1}{4\pi} (i\nu_{k})^{-1} \frac{1}{\gamma'_{k} + i(2\Omega - \omega'_{k})} e^{i2\Omega t} + \frac{1}{4\pi} (i\nu_{k})^{-1} \frac{1}{\gamma'_{k} + i(-2\Omega - \omega'_{k})} e^{-i2\Omega t}$$
$$\bar{g}_{\times}(t) = -\frac{i}{4\pi} (i\nu_{k})^{-1} \frac{1}{\gamma'_{k} + i(2\Omega - \omega'_{k})} e^{i2\Omega t} + \frac{i}{4\pi} (i\nu_{k})^{-1} \frac{1}{\gamma'_{k} + i(-2\Omega - \omega'_{k})} e^{-i2\Omega t}$$

F-function

$$\begin{split} f_{+}^{m}(\gamma(t),\alpha,\delta,\psi) &= -2\sqrt{\frac{\pi}{5}}\delta_{m,0}\cos^{2}\delta\cos2\psi \\ &+ \frac{1}{2}\sqrt{\frac{2\pi}{15}}\mathrm{e}^{-2i(\alpha-\gamma(t))}\delta_{m,2}[-4i\sin2\psi\sin\delta+(-3+\cos2\delta)\cos2\psi] \\ &+ \frac{1}{2}\sqrt{\frac{2\pi}{15}}\mathrm{e}^{2i(\alpha-\gamma(t))}\delta_{m,-2}[4i\sin2\psi\sin\delta+(-3+\cos2\delta)\cos2\psi] \\ &- \sqrt{\frac{2\pi}{15}}\mathrm{e}^{-i(\alpha-\gamma(t))}\delta_{m,1}[2i\sin2\psi\cos\delta+\sin2\delta\cos2\psi] \\ &+ \sqrt{\frac{2\pi}{15}}\mathrm{e}^{i(\alpha-\gamma(t))}\delta_{m,-1}[-2i\sin2\psi\cos\delta+\sin2\delta\cos2\psi] \end{split}$$

LISA verification double white dwarf binary catalog

Name	Period	Pdot	d	M2	q	M1	i	Mv	V	RA	DEC	I	b
	[s]	[s/s]	[pc]	Msun		Msun	[deg]			[h:m:s]	[d:m:s]	[deg]	[deg]
SDSS J0651+2844	765.4+/-7.9	?	~1000	0.50	0.5	0.25	86.9+1.6-1	?	g=19.1	06 51 33.338	+28 44 23.37	186.93	12.69
SDSS J0935+4411	1188+/-44	?	~660	>0.14	?	0.32	?	?	g=17.7	09 35 XX	+44 11 YY		· · · · · ·
SDSS J0106-1000	2346+/-2	?	~2400	0.43	0.4	0.17	67+/-13	?	g=19.8	01 06 57.39	-10 00 03.3	135.72	-72.47
SDSS J1630+4233	2390+/-4	?	~830	>0.52	?	0.31	?	?	g=	16 30 XX	+42 33 YY		
SDSS J1053+5200	3680+/-10	?	~1100	>0.26	?	0.20	?	?	g=18.87	10 53 53.89	+52 00 31.0	156.40	+56.79
SDSS J0923+3028	3884	?	270	>0.3 <mark>4</mark>	?	0.23	?	?	g=	09 23 45.59	+30 28 05.0	195.82	44.78
SDSS J1436+5010	3957 +/-10	?	~800	>0.46	?	0.24	?	?	g=18.16	14 36 33.29	+50 10 26.8	089.01	+59.46
WD 0957-666	5269.81080+/-0.00007	?	135 +/- 20	0.32 +/- 0.03	1.15 +/- 0.10	0.37 +/- 0.02	50 - 86	8.94	14.60	09 58 54.96	-66 53 10.2	287.14	-9.46
SDSS J0755+4906	5445	?	2620	>0.81	?	0.17	?	?		07 55 52.40	+49 06 27.9	169.76	30.42
SDSS J0849+0445	6800	?	930	>0.64	?	0.17	?	?		08 49 10.13	+04 45 28.7	222.70	28.27
SDSS J0022-1014	6902	?	790	>0.19	?	0.33	?	?		00 22 07.65	-10 14 23.5	99.30	-71.75
SDSS J2119-0018	7497	?	2500	>0.75	?	0.17	?	?		21 19 21.96	-00 18 25.8	51.58	-32.54
SDSS J1234-0228	7900	?	780	>0.09	?	0.23	?	?		12 34 10.36	-02 28 02.8	294.25	60.11
WD 1101+364	12503 +/- 5	?	97 +/- 15	0.36	0.87 +/- 0.03	0.31	25	9.55	14.49	11 04 32.61	+36 10 49.5	184.48	+65.62
WD 1704+4807BC	12511 +/- 2	?		0.56 +/- 0.07	0.70 +/- 0.03	0.39 +/- 0.05	61		14.5	17 05 30.1	+48 03 17	74.25	+37.19

Amplitudes and Q-factors of normal modes

