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Many applications, including ground state cooling and
unstable filters, rely on retardation effects

These effects become significant when optical dynamics is
comparable to or slower than the mechanical motion, i.e. the
system operates in the resolved sideband regime:

Cavity bandwidth o << mechanical resonant frequency fp,.

Mechanical motion creates sidebands of the EM field.

If the pump is detuned from cavity resonance by f,,, then
(only!) one of the sidebands is resonantly enhanced.
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Inserted mechanical loss Iope/21 and resonance shift o, a.u.

Motivation

Introduced mechanical damping and shift of mechanical resonant frequency
in the resolved sideband regime in a single cavity
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e Narrow cavity bandwidth in the resolved sideband limit
suppresses not only the opposite sideband but the carrier itself
too.

e If we could avoid this suppression, then the effects such as
optomechanical cooling would be greatly enhanced.

e What if we had another optical resonance at the carrier
frequency?
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Coupled optical cavities
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Coupled optical cavities
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Resonance splitting
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Enhanced coupling
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resonant frequency
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e Optical pump and one of the
Yo Yo sidebands are both resonantly
enhanced

e Enhanced maximal insertion loss:
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Enhanced coupling
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Insertion mechanical loss

Additional mechanical loss introduced via optomechanical interaction
in the resolved sideband regime:
Comparison between single cavity and coupled cavity systems
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Required parameters
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Mirror design

I. GaAs/AlGaAs stack mirrors on GaAs cantilevers

(a) [ GaAs (77.8nm) 36x
A, .63, ,AS (90.4 nm)

In,.,Ga, ,P (33.0 nm)

GaAs (358.1 nm)

Al,,,Ga, A (271.0 nm)

GaAs substrate

Robinjeet Singh et al. (2016). “Stable optical trap from a
single optical field utilizing birefringence”. In: Physical
review letters 117.21, p. 213604

e f. below 1 kHz
e Qmn~ 10* at 300 K

(b)

We borrowed one chip from LSU
(thanks Thomas)
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Mirror design
[I. GaAs/AlGaAs free-free beams

freq(444)=3.230118e6 Surface: Total displacement (m)

A 4.8988x107°
%107

Garrett D. Cole et al. (2011). “Phonon-tunnelling
dissipation in mechanical resonators”. In: Nature
Communications 2.1, p. 231

o free-free resonator geometry
e Qm~5x10%at 300 K
e Qn~10°at4K
e f,, =3 MHz for
(6.67 x 40 x 100) pm3




Current status

Chip design being finalised
Ongoing study on coupled cavity control
(modelling+experiment)

First aLIGO CDS standalone rack built in Birmingham
Practising optomechanics with the existing chip

Design of the experimental layout ongoing



Resolved sideband cooling

Unstable optomechanical filter
Elimination of backaction

Triple resonant transducer
Optomechanically induced transparency
Ponderomotive squeezing

etc.

Applications



Applications
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Haixing Miao et al. (2015). “Enhancing the bandwidth of gravitational-wave detectors with unstable
optomechanical filters”. In: Physical review letters 115.21, p. 211104
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Probe laser Applications

o Cooling and SQL
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Physical Review Letters 99.9, p. 093901



Probe laser Applications

ain Cooling and SQL
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® SQL increases by a

factor of 9:
2
(n) =9 il >
16wp,
® Quantum noise is
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 “cancelled” at
Normalized Fourier frequency Q/Q w=wm/2.

Jens M Dobrindt and Tobias J Kippenberg (2010). “Theoretical analysis of
mechanical displacement measurement using a multiple cavity mode
transducer”. In: Physical review letters 104.3, p. 033901



® Three equally spaced resonances

® Carrier and both sidebands are

enhanced

® Perfect transducer, sensitivity is

enhanced

® SQL is un
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Thank you for your attention!



