

Global Seismic Control

Sebastien Biscans

GWADW – Controls workshop May 22nd 2019

contact: sbiscans@ligo.mit.edu

Question: what can we do to improve seismic isolation performance?

- 1. Current performance in LIGO
- 2. Current limitation
- **3. Ideas to make things better!**
- 4. What's worth pursuing in the future?

From Biscans, S., et al. Classical and Quantum Gravity 35.5 (2018): 055004

From Biscans, S., et al. Classical and Quantum

From Biscans, S., et al. Classical and Quantur

All seismic isolation stages operate the same way:

- 6 degrees of freedom
- Passive isolation (1/f^2 from ~1Hz)
- Active isolation from 0.1Hz to ~30Hz
- At 10Hz BSC-ISI < 2e-12m/sqrt(Hz) in all horizontal dofs
- At 10Hz HAM-ISI < 4e-11m/sqrt(Hz) for PRCL and 4e-12m/sqrt(Hz) for SRCL

From Detchar summary pages.

Seismic isolation requirements

From M1900080

Seismic isolation requirements

Study (SEI alog 1393) shows that:

- The SRCL BW is currently limited by suspoint motion in 0.7 4 Hz.
- The suspoint SRCL motion from 0.7-4 Hz is all from the motion of HAM4 and HAM5
- The suspoint motion from the HAMs in the 0.7 to 4 Hz band is dominated by RX motion.

Reduced LF input motion will reduce angular control noise. Also:

• Hard to lock with >2-3um rms microseism motion (100mHz-400mHz)

>1um rms earthquake motion (30mHz-100mHz)

• Downtime from low-frequency input motion (wind/microseism/earthquakes): 5-10% at both sites + 8-12% locking during O2

Need to improve HAMs rotational motion between (1-10)Hz Need to improve low-frequency (below 1Hz) performance

General control scheme for one stage

Each stage controlled separately

<u>Feedback</u>: blending of sensors, one (or two) inertial sensors >0.1Hz with position sensors <0.1Hz (similar scheme in all 6dofs).

General control scheme for one stage

<u>Feedforward/Sensor correction</u>: ground seismometer feeds the CPS path to make it "inertial"

General control scheme for one stage

Don't forget tilt!

BRS feeds the seismometer hozizontal signal to substract tilt

HAM Noise budget L1 HAM4 Noise budget - Y direction

GS13 noise limited at low frequencyCPS noise limited at high frequency

HAM Noise budget

• Similar conclusion for RX

What can we do? At the stage level:

10

Wagnitude 10⁻¹01 10⁻²01 10⁻³01

10⁻⁵ , 10⁻²

200

-200

10-2

Phase $^{\circ}$

Tune the blend filters/controllers:

- For all dofs: tune LP filter to reduce the "bump" around a few Hz.
- For RX: change RX blend filters to reduce CPS injection above 1Hz (T1900107)

L1 HAM4 Noise budget - Y direction

HoQI: Cooper, S. J., et al. Classical and Quantum Gravity 35.9 (2018): 095007.

6D seismometer: Mow-Lowry, Conor M., and Denis Martynov. arXiv preprint arXiv:1801.01468 (2018).

15

HoQI: Cooper, S. J., et al. Classical and Quantum Gravity 35.9 (2018): 095007.

6D seismometer: Mow-Lowry, Conor M., and Denis Martynov. arXiv preprint arXiv:1801.01468 (2018).

16

HoQI: Cooper, S. J., et al. Classical and Quantum Gravity 35.9 (2018): 095007.

6D seismometer: Mow-Lowry, Conor M., and Denis Martynov. arXiv preprint arXiv:1801.01468 (2018).

What can we do?

At the stage level: HAM4 RX Same for RX 10^{-4} 1e-7 T240 GS13 L4C 10⁻⁶ ⊧ CPS Coarse ASD [rad/rt(Hz)] CPS Fine HoOI 6D ASD [m/rt(Hz]) 10-10 10-10 10^{-8 |} 1e-10 Ground motion Ground contribution 1e-12 GS13 noise contribution 10⁻¹² CPS noise contribution Measured GS13 signal RX motion 10^{-14} 1e-15 0.1 10 0.01 50 10⁻² 10^{-1} 10^{0} 10^{1} 10^{2} Frequency [Hz] Frequency [Hz]

HoQI: Cooper, S. J., et al. Classical and Quantum Gravity 35.9 (2018): 095007.

6D seismometer: Mow-Lowry, Conor M., and Denis Martynov. arXiv preprint arXiv:1801.01468 (2018).

What can we do?

At a global level: Control on differential motion

- Change coordinate system from local to global.
- Control on differential motion (better tuning?)
- DARM to CPS?
- Better match of the blend filters between HAM and BSC ISI platforms (alog SEI 1459)

What can we do?

<u>At a global level</u>: Control on differential motion

- In length: new IFO sensor to measure differential motion between platform
- Use platform on the right as a reference (nominal configuration)

What can we do? <u>At a global level</u>:

• Example: SPI, used at AEI (see Sina's thesis P1800282)

What can we do? <u>At a global level</u>:

- Example: SPI, used at AEI (see Sina's thesis P1800282)
- Higher blend frequency

What can we do? <u>At a global level</u>:

- Example: SPI, used at AEI (see Sina's thesis P1800282)
- Higher blend
- Long term: locking everything to the BS

What can we do? <u>Also</u>:

- In angle: optical levers between stages to improve RX below 1Hz
- "Quasi-inertial" sensor

Conclusion Lot of things we can do:

D

F

F

С

U

Т

Y

Ρ

Ε

R

F

0

R

Μ

Α

Ν

C E • At the stage level:

- Control/blend tuning
- New / better sensors
- At the "global" level:
 - Control on differential motion
 - Differential control in the corner station with IFO sensors
 - Differential control along the arms with IFO sensors

THANK YOU!

EXTRA SLIDES

Current configuration: one platform

Seismic isolation requirements

<u>Above 1Hz</u>, seems good enough (below requirements), BUT:

- SRCL is limited by shot noise at above ~10 Hz (SRCL ugf ~ 40 Hz).
- SRCL length is close to being a limiting coupling for DARM.

Study (SEI alog 1393) shows that:

- The SRCL BW is currently limited by suspoint motion in 0.7 4 Hz.
- The suspoint SRCL motion from 0.7-4 Hz is all from the motion of HAM4 and HAM5
- The suspoint motion from the HAMs in the 0.7 to 4 Hz band is dominated by RX motion.

Need to improve HAMs rotational motion between (1-10)Hz

Seismic isolation requirements

Below 1Hz:

- Hard to lock with >2-3um rms microseism motion (100mHz-400mHz) >1um rms earthquake motion (30mHz-100mHz)
- Downtime from low-frequency input motion (wind/microseism/earthquakes): 5-10% at both sites + 8-12% locking during O2

Need to improve low-frequency performance for better duty cycle

29

Extra couplings: 1st order

Extra couplings: 2nd order

Negligible

Pitch/RY

HAM2

From HAM2

$$\Delta L = L' - L = \frac{\theta_1^2}{2}(r+L)$$

From HAM3

Appendix: Extra couplings 1st order (math details)

1st case: HAM2

2nd case: HAM3

$$\Delta L = L' - L = A = \theta_2 r$$

Appendix: Extra couplings 2nd (math details)

2nd case: HAM3

Taylor series approximation: $\cos(\theta_{1}) = 1 - \frac{\theta_{1}^{2}}{2} = \frac{r}{A}$ Thales: $\frac{r}{r+L} = \frac{A}{r+L'}$ $L' = \frac{A}{r}L + A - r = \frac{2}{2 - \theta_{1}^{2}}L + \frac{2}{2 - \theta_{1}^{2}}r - r$ $\Delta L = L' - L = \frac{\theta_{1}^{2}}{2 - \theta_{1}^{2}}(L+r) \approx \frac{\theta_{1}^{2}}{2}(L+r)$ (since $\theta_{1}^{2} \ll 2$)

Taylor series approximation: $\cos(\theta_2) = 1 - \frac{\theta_2^2}{2} = \frac{A}{r}$

$$\Delta L = r - A = r - (1 - \frac{\theta_2}{2})r = \frac{\theta_2^2}{2}r$$

Difference in the HAM and BSC X isolation - simplest model - no sensor correction