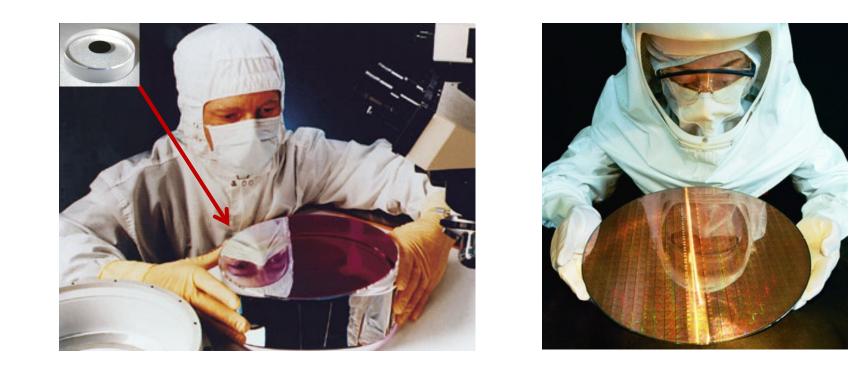
Crystalline coatings

S. Reid, with contributions from Cole/Penn/Harry/Fejer and Glasgow GWADW Elba 2019

Technologies

- AlGaAs
- Mechanical loss all Ts $\sqrt{?}$
- Developed technology \checkmark
- Optical performance \checkmark
- Grown on GaAs wafers X
- Requires transfer X?


- AlGaP
- Mechanical loss 20-120K ✓
- Lattice matched to silicon \checkmark
- Not well-developed X
- Optical properties X
- Growing on 200kg scale optics X?

AlGaAs

• Garret Cole (CMS) kindly created some slides regarding scaling AlGaAs.

Scalable Production Technique

- Leverage semiconductor infrastructure for LIGO-scale optics
 - high-uniformity epitaxial growth on large-diameter substrates
 - void-free direct bonding of crystalline semiconductors
 - commercial tools available for LIGO-relevant mirror sizes

Scalable Production Technique

GaAs wafers: $20 \rightarrow 40$ cm

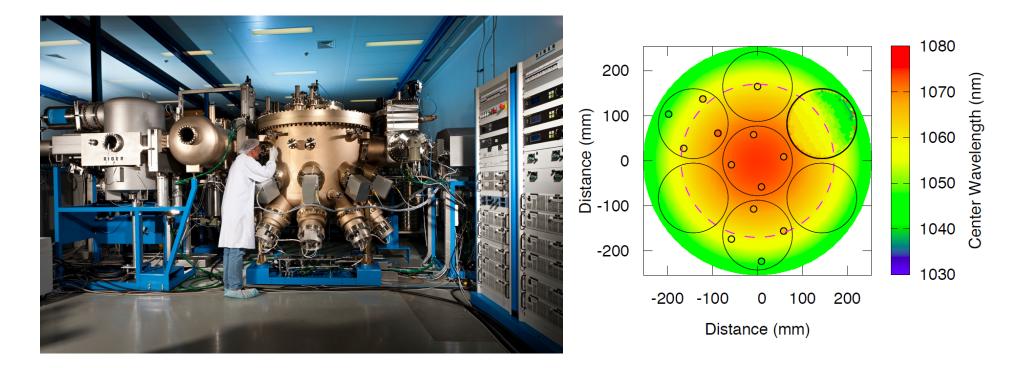
Epitaxy: $30 \rightarrow 40$ cm

Bonding: 45 cm

- Crystalline coatings limited to ø20 cm, three areas to scale
 - commercial GaAs wafers currently available up to 20-cm diam.
 - epitaxy qualified for wafer sizes of 30 cm (~50-cm chamber diam.)
 - semiconductor direct bonding demonstrated to diam. of 45 cm

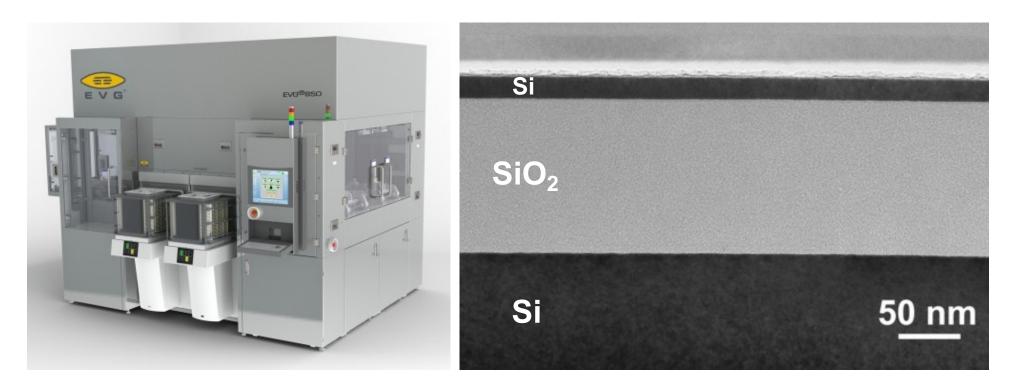
LIGO-Scale GaAs Wafers

- Promising discussions with Freiberger Compound Materials
 - currently produce GaAs wafers up to 20-cm diameter
 - VGF crystal growth capabilities up to ~40-cm max diameter
 - "waferizing" processes must be scaled up (main cost driver)
- Estimated 2 year timeline and total cost of \sim \$5M



Step 2: LIGO-Scale Epitaxy

- Ongoing discussions with external epi foundries (US based)
 - two options for production MBE reactors:
 - Veeco Gen2k or Riber7000/8000
 - LIDAR and facial recognition is rapidly changing market
- Estimated 3-4 year timeline and total cost of ~\$7M-10M


Step 3: LIGO-Scale Bonding

- Electronic Visions Group, key vendor for semicon. bonding
 - currently offer a production tool for 45-cm SOI manufacturing
 - SOI: silicon on insulator, wafers for microwave electronics
 - designed for 1-mm thick subs., must be modified for optics

Estimated 3-4(?) year timeline and total cost of ~\$10M

Exploring 3 loss angles of AlGaAs

Penn/Harry/Cole:

Elasticity Matrix (Cubic Crystal — Voigt Notation)

 $\begin{bmatrix} C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{44} \end{bmatrix}$

 $C_{11} = 118 \text{ GPa}$ $C_{12} = 55.9 \text{ GPa}$ $C_{44} = 58.2 \text{ GPa}$

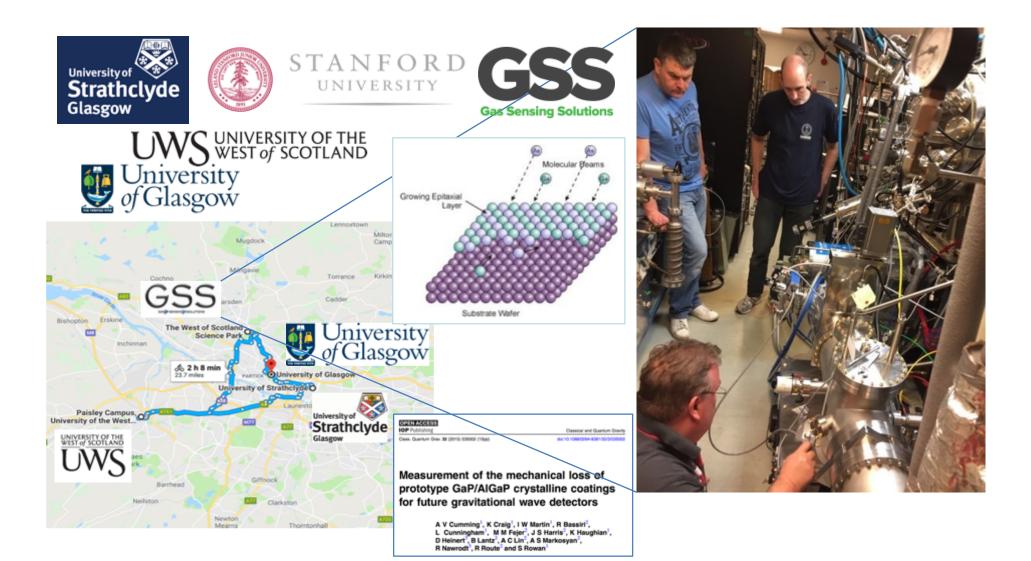
There should be a loss angle associate with each of the elastic constants

 $\phi_{11} \, \phi_{12} \, \phi_{44}$

Steve Penn LIGO DCC -G1900684 https://arxiv.org/pdf/1811.05976.pdf $\phi_{\text{Bulk}} = (5.33 \pm 0.03) \times 10^{-4}$, with $\phi_{\text{Shear}} = (0.0 \pm 5.2) \times 10^{-7}$

> Fejer/Penn/Harry rechecking effect of thermoelastic contribution – these numbers are overly pessimistic!

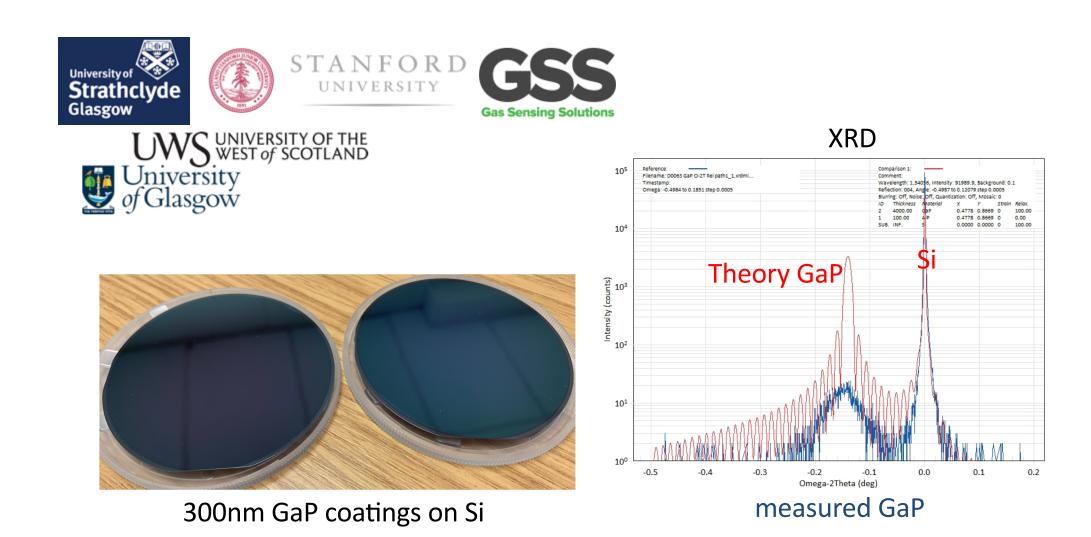
AlGaP crystalline mirror technology



STANFORD University UNIVERSITY

University of Strathclyde Glasgow

UNIVERSITY OF THE WEST of SCOTLAND UWS


Crystalline coatings – GaP growths underway

STANFORD University

GaP and AlGaP/GaP loss:

1.0E-04 Coating Loss 5916 Hz 📕 9160 Hz 🔺 10336 Hz 1.0E-05 10 15 20 25 30 35 40 45 Temperature (K)

Murray et al., Phys. Rev. D 95 (2017) 042004

Coating	Average coating mechanical loss $(\times 10^{-4})$		
	14 K	20 K	120 K
GaP	0.39 ± 0.08	0.27 ± 0.02	0.77 ± 0.07
Ta_2O_5	9.0 ± 1.0	10.7 ± 1.3	5.2 ± 0.3

Cumming et al., Class. Quantum Grav. 32 (2015) 035002

MBE

AlGaAs

- Developed technology \checkmark
- Optical performance \checkmark
- Grown on GaAs wafers X
- Requires transfer X

AlGaP

- Mechanical loss ✓
- Lattice matched to silicon \checkmark
- Not well-developed X
- Optical properties X
- Growing on 200kg scale optics X

Others?!?!

AlGaN

Growth on Al2O3, GaN or AlN.

Issues of quality of films on Al2O3 cited by Novikov et al. Journal of Vacuum Science & Technology B 34, 02L102 (2016)

Common challenges:

- electro-optic and piezoelectric effects (initial discussion Abernathy T1400726)
- scaling (Cole estimated ~\$40M for GaAs substrate + MBE + bonding tool)
- Mechanical loss at RT on crystalline substrates
- Scatter and absorption evaluation, effect of defect, large area
- Who is doing the work? (how much will industry drive, how much do we need to do)?