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Overview

• Ongoing research in multi-material coating designs
• Room temp mechanical Loss with heat treatment
• 2um absorption with heat treatment

• Coating absorption and suspension thermal noise
• Finite element modelling of End Test Mirrors
• Implications of coating absorption on operation

temperature
• Coating absorptions effect of suspension thermal noise
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• aSi has very low loss, but too high absorption

• despite progress in reducing aSi absorption still > ET design
requirement

• multi-material design tries to exploit low loss while minimising impact
on coating absorption

Thermal noise reduction 
with aSi-based coatings

J Steinlechner et al, PRL 120 (2018) 263602. 

R Birney et al, PRL 121 (2018) 191101
Recent Publications: 
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Thermal noise reduction 
with aSi-based coatings

Illustrative Case 



Multimaterial Coating 
Design 
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• To minimise coating thermal noise:

• Alternating layer design reflects laser light at
every boundary.

• Highly reduced field reaches high absorbing
aSi

• Less number of coating layers with high
refractive index contrast layers ~= less
coating thermal noise



Absorption at 2um
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Absorption 24 ppm (As Deposited) 

High absorption section exposed to too much 
laser power (damaged) 

Absorption Measured with Photo-thermal Common Path 
Interferometry (PCI)

Absorption Map of Full Stack Coating 

Histogram of Absorption 



Absorption with Heat 
Treatment 
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Treatment 
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Minimum in absorption trend  
for both stacks 



Absorption with Heat 
Treatment 
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Minimum in absorption trend  
for both stacks 



Upper Stack ( SiO2 | Ta205 )

Lower Stack ( aSi | SiO2 ) 

Full Stack ( SiO2 | Ta205 | aSi)  

Room Temperature Coating 
Losses 

Prototype multi material coating performs as expected
Mechanical loss measurements after progressive heat treatments underway
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For more details on cryogenic coating loss on silicon substrates and 
predictions please see the poster by Peter Murray: 


“Multimaterial Coatings for 3rd Generation Gravitational Wave 
Detectors” 

~20% reduction of loss in upper 
stack after 3hrs @ 300*C

~20% reduction of loss in 
lower stack  

after 3hrs @ 300*C



Maximum 
Tolerable 

Absorption  - a 
comparison  

Comparison of current 
and cryogenic detector 
operation in relation to 

optical absorption. 
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aLIGO Thermal Control System

Interferometer Laser power passing through test masses  causes temperature
gradient (dn/dT dominated) 
Power buildup inside Fabery-Pèrot Cavity causes change in Test mass radius of 
curvature     ∆S  (coating absorption dominated)

Silica Test Masses 
Active thermal control using radiative heating 

Room Temperature Detectors 

Brooks et al (2016)



∂S - Change in Sigatta 
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If the incident gaussian laser beam 
is matched to the RoC of the mirror  

the change in the heated area can 
be assumed as a hemispherical 
distortion on the mirrors surface. 

The relative change in curvature can be 
simplistically calculated 


if the thermal  expansion, absorbed 
power and wavelength are known  

using: 

W. Winkler ,et al.(1991)



FEA Analysis  
Room Temperature 
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Using methods described by R.C.Lawrence (1997) and building on the work of A. 
Brooks.  the test mass is modelled as a 2D approximation of a cylindrical mass: vastly 

decreases computation time. 

Surface Curvature with Laser Heating 



Tolerable Absorption
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To zeroth order due the thermoelastic expansion of silicon under these conditions can be 
considered relatively small (~ 0.0001% for R=10 km  ) .


For ETMs  - Heat absorption from incident laser becomes dominating

Assuming a thermally isolated test mass the thermal effects on a cryogenic optic 
can be modelled to predict heat distribution through test mass 


How much conductive cooling can the suspension fibres provide ? 

What effect does this have on suspension thermal noise?



Conductive Cooling 
• Under cryogenic conditions test mass cooling

becomes more difficult

• <120K cooling power dominated by conduction
through suspension fibres

• <40K conductive cooling limited by fibre cross
section (phonon scattering)

• We need fibres which are strong enough to
support the 200 kg masses ( 3x with safety factor )
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• Requires thicker
suspension fibres

• Increases suspension
thermal noise 



Suspension Fiber  
Requirements 

 21A V Cumming et al 2014 Class. Quantum Grav. 31 025017

Required tsuspension   (Toperation) Suspension Thermal noise  (Toperation)

Operating at ~40K would require a minimum 500um thick fibre  
How much heat extraction can this provide ? 



t

40 K Operation 
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Test Mass Heating With no 
Suspensions  

- i.e. No Conductive Cooling

Coating Absorption 



t

∆T with No Fibres 
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Coating Absorption 

1.5 ppm induces ∆T = 16 K 
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A V Cumming et al 
2014 Class. Quantum 

Grav. 31 025017
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A V Cumming et al 
2014 Class. Quantum 

Grav. 31 025017
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A V Cumming et al 
2014 Class. Quantum 

Grav. 31 025017

Thicker Fibre does not meet ET 
Thermal noise 
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A V Cumming et al 
2014 Class. Quantum 

Grav. 31 025017



Thermal Noise  
with Coating Absorption
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2mm thick fibre 
x3 safety factor  

1mm fibre 

500um fibre ( improved Si) 



Thermal Noise  
with Fibre Radius
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2mm thick fibre 
x3 safety factor  

1mm fibre 

500um fibre ( improved Si) 



Interesting talking points

• The tolerable level of coating absorption is dominated by heat conduction through
the fibres

• Based on initial strength studies we need thick (~2mm) fibres to support 200kg mass.

• Does not meet ET requirements

• Can extract 55ppm of absorbed laser power

• Higher absorption allows for more layers of aSi inside a multilayer stack. -
reducing overall coating loss

• 500um fibres would be below ET-LF total noise budget (@10 Hz)

• Si fibre strength must be improved over initial measurements

• Thinner fibre tightens requirements on tolerable absorption (1ppm)
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