

102

Leibniz

Universität

Hannover

6 0 0

G

e

0

GEO 600 Future

Jim Lough for the GEO team

Universitat de les Illes Balears

Facility overview

- Construction began in 1995 (groundbreaking)
- Installation began in 1998
- same core optics
- switch from 98% to 90% signal recycling mirror in 2011

History of Pioneering Technologies

- Lasers
- Glasgow suspensions monolithic
- Signal Recycling/ Extraction
- Thermal Compensation
- Electrostatic Actuators
- Squeezing

GEO data most recently used in postmerger analysis:

Properties of the Binary Neutron Star Merger GW170817

B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) Phys. Rev. X 9, 011001 – Published 2 January 2019

Sensitivity

- No plans for competitive sensitivities
- In 2015, we decided to NOT pursue this route ->
 - or any other major sensitivity upgrades
- Pursuing technologies applicable to high frequency sensitivity

Squeezing

Squeezing

Tons of nonlinear gain to estimate phase noise

Squeezing

- reduction in squeezing variations
- thermal drifts can cause
 - changes in the phase matching in the OPA
 - new control loop to improve stabilization of the phase matching
 - reduction of isolation of faraday isolators
 - locked the phase of the backscatter light to reduce technical noise impact - in conjunction with optical efficiency improvements

higher bandwidth lock

- Autoalignment of OMC to michelson sidebands
- squeezing also aligned to michelson sidebands
- No dithering required (dithering = optical loss)

MDWS Control

Signal Recycling Control

Vaishali Adya

Concept

- Up to several hundred Hz, GEO 600 observes length noise arising from control of the signal recycling mirror, technical noises and a mystery noise.
- Inject a subcarrier through the output port offset by N*FSR with RF modulation.
- Reflected from the squeezer OPA for injection into the interferometer

Concept paper for control of Einstein Telescope : underway

Signal Recycling Control

Vaishali Adya

GEO logbook :

8122

Results

- All electronics in place and phase lock loop between the subcarrier laser and the interferometer beam established.
- The error signals obtained for the SRCL control with this scheme looks promising*.

Signal Recycling Control Vaishali Adya

Debugging part 1

٠

GEO logbook : 8263

Spectrum plot using Kaiser window 31: G1:ISC-LSC_SRC_EP_DIGI_OUT_DQ fs = 16384 : 180s from 2018-11-07 10:45:30 - at operating point 2.87GHz nfft=819200, nolap=25.00, enbw=0.064, navs=6 32: G1:ISC-LSC SRC EP DIGI OUT DQ fs = 16384 : 180s from 2018-11-07 11:15:30 - at operating point 2.89GHz nfft=819200, nolap=25.00, enbw=0.064, navs=6 33: G1:ISC-LSC_SRC_EP_DIGI_OUT_DQ 10^{2} fs = 16384 : 180s from 2018-11-07 11:43:30 - at operating point 2.93GHz nfft=819200, nolap=25.00, enbw=0.064, navs=6 34: G1:ISC-LSC SRC EP DIGI OUT DQ fs = 16384 : 180s from 2018-11-07 11:19:00 - shutter closed nfft=819200_nolan=25_00_enbw=0.064_navs=6 35: G1:PEM GEOPHONE1 sub-carrier error signal fs = 2048 : 180s from 2018-11-07 10:45:30 - at operating point 2.87GHz (calibrated to nominal signal) nfft=102400, nolap=25.00, enbw=0.064, navs=6 10^{1} Transfer function 36: G1:PEM GEOPHONE1 fs = 2048 : 180s from 2018-11-07 11:15:30 - at operating point 2.89GHz nfft=102400, nolap=25.00, enbw=0.064, navs=6 from the old signal-37: G1:PEM_GEOPHONE1 Amplitude [arb/√Hz] fs = 2048 : 180s from 2018-11-07 11:43:30 - at operating point 2.93GHz nfft=102400, nolap=25.00, enbw=0.064, navs=6 recycling error point 38: G1:PEM GEOPHONE fs = 2048 : 180s from 2018-11-07 11:19:00 - shutter closed 10^{0} nfft=102400, nolap=25.00, enbw=0.064, navs=6 compared to the innominal SR error signal loop spectra of old 10 and new signals 10 Reasonably flat at 10 mid frequencies, higher optical gain 10^{-2} compared to old 10 sub-carrier error signal with shutter closed signal, as predicted by the model 10^{-2} 10^{-3} 10⁰ 10^{3} 10^{-1} 59.5 10^{1} 10^{2} 59 60 60.5 61 Frequency [Hz]

Signal Recycling Control Vaishali Adya

Re-visiting the modelling

- Reproduced some of the features with a finesse model
- Coupling from the PRC via the Schnupp asymmetry coming from a difference in lengths used in the optical model
- Position of offending peaks : l_{prc} - l_{src}
- Height of the peaks : schnupp coupling

Signal Recycling Control Vaishali Adya

Plans for the SRC control experiment

- Re-visit OptoCad model for lengths to be used in the Finesse model
- Change sub-carrier frequency to eliminate PRC coupling
- Re-do noise measurements i.e. impact on 'h'
- Insert squeezing into the interferometer

Controls

- Adaptive feedforward
- Machine Learning!
- Bilinear couplings in signal recycling (See Nikhil's poster!)

Controls

- Adaptive feedforward
- Machine Learning!
- Bilinear couplings in signal recycling

The structure of the neural network is depicted above. In contrast to Model 1, Model 2 uses not only the current image as input, but also difference images to past points in time (image on the left).

Plans (high level)

- Astrowatch as long as it makes sense
- GEO 600 as a full scale testbed
- Applications to fully functional gravitational-wave detector
- Technologies to enhance high frequency sensitivity
 - fancy quantum schemes
 - need new core optics and balanced homodyne readout
 - EPR entanglement on a detuned GEO? not certain

10⁴

10³

f [Hz] (sig1)

EPR sensitivity

current 4dB

current 10dB new core optics, tuned 60% MSR 10dB new core optics, detuned 98% MSR 10dB, loss dominated entangled squeezing On detuned 10⁻²¹ detector EPR Abs "squeezes" without reducing 10⁻²² bandwidth penalty of 3dB or 10⁻²³ 10^{2} 10¹ more

10⁻²⁰

less certain ———

Thanks!

3 departures

plus Fabio Bergamin, Nikhil Mukund, Séverin Nadji