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Facility overview

Construction began in 1995 (groundbreaking)
Installation began in 1998
same core optics

switch from 98% to 90% signal recycling mirror in 2011




History of Pioneering

Technologies

Lasers

Glasgow suspensions -
monolithic

Signal Recycling/
Extraction

Thermal Compensation
Electrostatic Actuators

Squeezing



Sensitivity

[1242345618-1242432018, state: Observing]

GEO-LIGO-Virgo gravitational-wave strain
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GEO data most recently used in postmerger analysis:
Properties of the Binary Neutron Star Merger GW170817

B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration)
Phys. Rev. X 9, 011001 — Published 2 January 2019
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Sensitivity

* No plans for competitive

sensitivities

1020 &

In 2015, we decided to
NOT pursue this route ->
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Strain [1/VHz]

e or any other major
sensitivity upgrades

Pursuing technologies
applicable to high
frequency sensitivity

10

-24 |1

\
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—Quantum Vacuum
—Seismic
—Newtonian Gravity
—Susp. thermal
—Coating Brownian
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Squeezing

time [d]
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Squeezing

sqgz. vs asqz. better

LSC
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Fit: optical efficiency=(77.1+1.1)%, phase noise=(22.7+1.1) mrad, OPO threshold={(46-6+6-1)-mW-
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— model fit with phase noise
O measurement data
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antisqueezing [dB]

35

1 0.1

0.2 0.3 0.4 0.5 0.6
pump power/threshold

Phase noise contributions

- rf sidebands

- fiber noise from main laser
« sensing noise

- OPA intrinsic is very low

0.7 0.8 0.9 1

anti squeezing
due to phase
noise alone!

Tons of nonlinear gain to estimate phase noise
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Squeezing

* reduction in squeezing variations
e thermal drifts can cause

* changes in the phase

matching in the OPA
0 1
* new control loop to

8 5

improve stabilization of the
phase matching

* reduction of isolation of
faraday isolators

* |ocked the phase of the
backscatter light to reduce
technical noise impact - in
conjunction with optical
efficiency improvements

Time [d]

14

12

—since opt. eff. improvements
_y |—last 30 days

5 5.2 5.4 5.6 5.8

Observed Squeezing Level [dB]
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~1.5% loss PD q.e. and reflection

-\ TCOb

Optical Loss

n-vacuum,

2% loss (coating)

3.2% loss (astigmatism)

~2.3% loss squeezed
light source
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3% loss (reflection from OMC)
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higher bandwidth lock

Autoalignment of
OMC to michelson
sidebands

squeezing also
aligned to michelson
sidebands

No dithering required
(dithering = optical
loss)

gco;-gsb
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MDWS

OMC leakage marked by
6kHz modulation o
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MDWS Contro

EOM
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Beamsplitter Thermal
Compensatlon

--Jh-- | 60 mm R

thermal projection

system
heater MCN E

array |
off-axis \ ‘

aluminum

mirror

//>< ZnSe
KBr lens vacfium viewport
BDIPR = MPR

(a) Photograph of the heater array.

polished surface 7.5 mm Pt100 element

<

22kWTEM,,

BS

- ceramic shell
| PCB |

(b) Cross section of the heater array.

new optical system

Fig. 2. Photograph and cross section of the heater array.

30% contrast improvement so far

Best focus

H. Wittel, et al. "Matrix heater in the gravitational wave

\ vacuum Viewport 12 observatory GEO 600," Opt. Express 26, 22687-22697 (2018)



Signal Rec

Concept

Up to several hundred Hz, GEO 600 observes
length noise arising from control of the signal
recycling mirror, technical noises and a mystery
noise.

Inject a subcarrier through the output port
offset by N*FSR with RF modulation.

Reflected from the squeezer OPA for injection
into the interferometer

Concept paper for control of
Einstein Telescope : underway

EOM Output

MFN

-+

Main Laser T
o nc

prc 'fMI

L,=1.1

Newly added
injection scheme and

readout electronics

597.0241 m

Ly,=

MCE

463 m

LN1=598.5682 m

LSC

cling Control

Vaishali Adya

1BS ﬂ

Le;=598.4497 m

—]
“ |
|
New SRCL !

P15MHz

Sub-carrier
injection path

....................

readou? Isol, Sub-carrierf i
photodiode ™ o N laser
- | injection path
X
. 18.45 MH
2.8 GHz GW readout j@ z
C X Ay, <

......................................................................................................................
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Signal Recycling Control

Vaishali Adya

GEO logbook :
8122

Results

* All electronics in place et
and phase lock loop
between the subcarrier . y M

laser and the
mterferometer beam
established.

* The error signals
obtained for the SRCL '
control with this scheme
looks promising*.

S
=
Y
=
.
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S
=

* Conditions apply : slightly noisier
than expected, sharp spikey
features
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Signal Recycling Control

Debugging part 1

Transfer function
from the old signal-
recycling error point
compared to the in-
loop spectra of old
and new signals
Reasonably flat at
mid frequencies,
higher optical gain
compared to old
signal, as predicted
by the model

Amplitude [arb/vHz]

10%

107"

1073

Spectrum plot using Kaiser window

Vaishali Adya

GEO logbook :
8263

FT

SAL \ir
N

sub-carrier error signal
(calibrated to nominal signal)
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31: G1:1SC-LSC_SRC_EP_DIGI_OUT_DQ

i fs = 16384 : 180s from 2018-11-07 10:45:30 - at operating point 2.87 GHz
nfft=819200, nolap=25.00, enbw=0.064, navs=6

32: G1:1SC-LSC_SRC_EP_DIGI_OUT_DQ

T fs = 16384 : 180s from 2018-11-07 11:15:30 - at operating point 2.89GHz
nfft=819200, nolap=25.00, enbw=0.064, navs=6

38: G1:1SC-LSC_SRC_EP_DIGI_OUT_DQ

fs = 16384 : 180s from 2018-11-07 11:43:30 - at operating point 2.93GHz
nfft=819200, nolap=25.00, enbw=0.064, navs=6

34: G1:1SC-LSC_SRC_EP_DIGI_OUT_DQ

fs = 16384 : 180s from 2018-11-07 11:19:00 - shutter closed
nfft=819200, nolap=25.00, enbw=0.064, navs=6

35: G1:PEM_GEOPHONE1

fs = 2048 : 180s from 2018-11-07 10:45:30 - at operating point 2.87GHz
nfft=102400, nolap=25.00, enbw=0.064, navs=6

36: G1:PEM_GEOPHONE1

fs = 2048 : 180s from 2018-11-07 11:15:30 - at operating point 2.89GHz
nfft=102400, nolap=25.00, enbw=0.064, navs=6

37: G1:PEM_GEOPHONE1

fs = 2048 : 180s from 2018-11-07 11:43:30 - at operating point 2.93GHz
nfft=102400, nolap=25.00, enbw=0.064, navs=6

38: G1:PEM_GEOPHONE1

fs = 2048 : 180s from 2018-11-07 11:19:00 - shutter closed
nfft=102400, nolap=25.00, enbw=0.064, navs=6

107" 10°

10’
Frequency [HZz]
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Signal Recycling Control

Vaishali Adya

Re-visiting the modelling

« Reproduced some of the
features with a finesse model

* Coupling from the PRC via j

0.003 -

the Schnupp asymmetry oo |
coming from a difference in  :

lengths used in the optical g> S> \ \\
model " oo m ﬂ p m
* Position of offending peaks :

L,

prc ‘src

—-0.003 -

* Height of the peaks : schnupp | | | | |
Coupling e o Laserfreqzency [Hz] 100000 200000
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Signal Recycling Contro

Vaishali Adya

Plans for the SRC control experiment

 Re-visit OptoCad model for lengths to be used in the Finesse model

4

» Change sub-carrier frequency to eliminate PRC coupling

4

* Re-do noise measurements i.e. impact on ‘h’

4

* Insert squeezing into the interferometer

17



Controls

prediction for G1_ASC_SRC_EP-MSR-TILT
RMS reduction factor: 3.22

actual, RMS:0.0666

1.00

e Adaptive feedforward O e RMS0.0207

0.90

0.85 - l

e N MH rl |

e Bilinear couplings in signal
recycling (See Nikhil’s poster!) o o oo o w1400

frame [number]

 Machine Learning!

voltage [a.u.]
o
(0]
o

The Neural Network

DP image, 52x41 feature maps, 50x39x64 fully connected

| reduced 64x1

S " e feature maps outout
s e e 25x19x64 P
i %~ I N | . 8
dnn T e - S :

i |Ti{liax?) g:onvoluﬂon» %9 li m - e V
AR FHHH :’"!.*fi:$75 H i mjx pooll‘llw‘l% — conv.&
R - pooling

The structure of the neural network is depicted above.
In contrast to Model 1, Model 2 uses not only the cur-
&8 rent image as input, but also difference images to past
points in time (image on the left).

18



Controls

prediction for G1_ASC_MID_EP-MCE-MCN-TILT
RMS reduction factor: 4.7

® Ad aptive feedfo rward 0.6 actual, RMS:0.1816

—— predict, RMS:0.1777
——— residual, RMS:0.0386

e Machine Learning! 7
e Bilinear couplings in signal
recycling 05

0 200 400 600 800 1000 1200 1400
frame [number]

The Neural Network

fully connected

DP image, 52x41 feature maps, 50x39x64 reduced 64x]
[
S feature maps output
HE 25x19x64 )
HH E ﬁ e "" N - H E X
eee . ’ 3 E: : : eooeo == = E
T = - i } — > T .
.... on - : 2X2 max pooling — geopnia& :
: : ol e N -
HEE I pooling

The structure of the neural network is depicted above.
In contrast to Model 1, Model 2 uses not only the cur-
@ rent image as input, but also difference images to past
points in fime (image on the left).
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Plans (high level)

Astrowatch as long as it makes sense
GEOQO 600 as a full scale testbed
Applications to fully functional gravitational-wave detector
Technologies to enhance high frequency sensitivity
e fancy quantum schemes
* need new core optics and balanced homodyne readout

e EPR entanglement on a detuned GEO? not certain

20
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EPR sensitivity

e On detuned
detector EPR
“squeezes”

without reducing
bandwidth

e penalty of 3dB or
more

Abs

1020 T J S P A B R |
s current 4dB
e current 10dB
= new core optics, tuned 60% MSR 10dB
new core optics, detuned 98% MSR 10dB, loss dominated entangled squeezing
10721 -

¥
1022 | —/—
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10"

f [Hz] (sig1)
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Potential Timeline for
Upgrades

less certain




Thanks!

3 departures

- T

plus Fabio Bergamin, Nikhil Mukund, Séverin Nadji
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