

G S

S

Updates on NN Estimation

Jan Harms

Gran Sasso Science Institute (GSSI)
National Laboratory of Gran Sasso (LNGS)

Main Sources of NN

Whenever something follows a rectilinear motion or fields have plane boundaries, then you get an exponential cut-off in the form:

 $\exp(-2 \cdot \pi \cdot f \cdot x/c)$

Examples: sound and seismic waves, advected fields, moving objects, flowing water

Water NN

Full dimension:

- 1) Capilary / gravity waves
- 2) Transportation
- 3) Compression / sound

Localized perturbation:

- 4) Vortices / turbulence
- 5) Channel-floor to watersurface interaction
- 6) Flow around obstacles

Water flow and waves are both too slow for (1) - (3) to matter (exponential cutoff at very low frequencies), even if the water flows closely to the test mass.

Perturbation produced by vortices and other structures included in (4) - (6) in the NN band are supported by small water volumes and associated NN is very likely insignificant, but one should look at this more carefully.

Rayleigh NN

1. Vertical surface displacement

Length Scales

S

1) Depth

2) Reduced wavelengths

a) 1/k (reduced Rayleigh wavelength)

b) $(1/k^2-1/k_P^2)^{1/2}$ (inh. vertical compressional wavelength)

c) $(1/k^2-1/k_S^2)^{1/2}$ (inh. vertical shear wavelength)

 $\exp(-\kappa \cdot d)$

NN Suppression with Depth

Faster Rayleigh waves

Rayleigh dispersion model:

1.8km/s @ 1Hz, 750m/s @ 5Hz, 450m/s @ 10Hz

Slower Rayleigh waves

Rayleigh dispersion model:

1.5km/s @ 1Hz, 500m/s @ 5Hz, 350m/s @ 10Hz

Oceanic Microseisms

Coughlin et al, 2018

Suggested explanation:

- 1) When oceanic microseisms are strong, then the sources are relatively close and Rayleigh waves dominate
- If microseisms are near the low-noise 2) model, then many distant sources contribute and body waves dominate

ET: Seismic NN

Badaracco, 2019

- Seismic models: Body wave: 3x - 12x LNM, Surface: 50x - 1000x LNM
- Includes all three contributions from slide 4

