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Realizing classical systems

 For classical systems it is easy to realize arbitrary
state-space representations using integrators and feedback

 For quantum systems most state-space representations
not physically possible

Need to conserve [x, xj]



Current limits of our gquantum
realization techniques

Say we want to build quantum system with a desired transfer
function or general behaviour...

Physical
realization
Physical
realization

Current methods
Desired
behaviour

New method

Desired
behaviour

Guessing..

Systematic!
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Quick
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Intro to state-space

representation

Used to dealing

with frequency-domain transfer functions

y(s) = G(s)u(s) Y outputs U inputs

Control theorists

x(t) = Ax(1) -

prefer time-domain state-space representation

- Bu(t) Y outputs U inputs

y(1) = Cx(7) -

- Du(t) X internal system state

A system dynamics matrix B input coupling matrix

C output coupling matrix D “Direct feed” matrix

(everything linear here)
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State-space degeneracy

e (A, B, C, D) -> G(s) is many-to-one mapping

 Many state-space reps, (even non-physical ones),
correspond to one transfer function G(s)

 Therefore, actual (A, B, C, D) gives physical insight

* bijection exist between (A, B, C, D) and full Hamiltonian
for system
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Finding the state-space rep
for transfer func.

Example: tuned cavity

|dentify desired
transfer function

, W — 7Y
(freq. domain) G(Zw) — -
1w + 7y
r = Ar + Bu
Find a state-space . . .
representation y=Cx+ Du
(time domain) . .
No unique mapping from
Gto (A B, C, D)!

Need to ensure that
d[xia ij] — () Constrains (A, B, C, D)

Find the physically
realizable one
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Constraints on (A, B, C, D)
for physical realizability

It can be shown that d[x;, x;] = 0

implies that AJ + JAT + BJB"
JCT + BJID'

if we use cavity mode operators (anni

x=a, x;=a' and [a,a

J

1 O
J =
then [O _1]

(quantum ito product)

=0
=0

nilation & creation)

121

Jd IS “commutation matrix”
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Example: unstable filter

e Unstable filter = optomechanical device w/
negative dispersion d x — Q1

* Can be used to broaden bandwidth G‘f/ &F;]F;'dsl;gar:/iio
of GW detector without G(s) = ’
sacrificing sensitivity (5) = s©)2

a’ln wo _I_ wm <3

Known physical realization: —> [| |]
cavity coupled to mirror via <

off-resonant pump wy + o, UAout
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Finding realizable state-
space representation

Guess a state-space representation, not necessarily physical

a U

G — +

c'L‘L_ o _uT_
Y | B u
YyT|

- _qu_

== )
O N O
Q

Found using

Transform matrices AJ+JAT+ BJBT =0
to obey JC"+ BJDT =0

[a
Find al
physically realizable form [Y |

Yy

2 0
0 2

0
_2[1

a

|[]
o

.

|+l

“Controllable Canonical Form”

(I omitted details but it is
easy to do)

5ol
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Final steps

From this (A,B,C,D) canfind (H,L)

H internal system Hamiltonian (Usually) have a
| | | clear physical
L linear coupling matrix realization

For our state-space find (A = 1)

H =0 (chose rotating frame w.r.t resonant freq.)

i i V2
0 W — H. = £(ab +a'h’)  Same physics as unstable filter

__i O _ int 2 T

adiabatically eliminated high frequency auxiliary mode
(e.g. mechanically suspended mirror)




11/14

Proof of concept:
coupled cavity resonance

Coupling of tuned SRC and arms leads to resonance splitting

ETM
~
ITM E 10723}
W — |
S
; x (Ysrc) I
SRM =2
! 10724, Soooommooooooood T —
' 101 102 103
© f [HZ] \
Maybe we can tune @¢ to probe NS physics? Wqg
y slop pny

Would like to boost width of dip without sacrificing depth
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Broadening with frequency-
dependent phase

e'?
Imagine a “black box” w/ freq. ... -U_E_['_u
dependent phase ¢(L2)

SRC arm cavity

Found phase that /\

2 2 /
broadens dip while  ¢(2) = (27 —wi)(m — 1) Controls amount of

keeping depth same 7182 broadening

21 Q — it} (QF — 0))(y, — 7))
271 + it (%2 — w)(y; — 11)

In pole-zero form G(iIQ) = e'? ~
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Next steps to find physical
realization for black box

1. From pole zero form find a state-space representation
(A, B, C, D)

2. Transform to physically realizable state-space rep.
(A, B,C',D") satistying A'J+ JA)' +B'J(B) =0
J(CY' +B'J(D) =0

3. Find physical realization

Step 3 not as trivial as unstable filter...
...because transfer func. second order in Q)

——> 2 internal degrees of freedom
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More degrees of freedom

Single degree of freedom 2 degrees of freedom = 2 coupled
“generalized open oscillator” generalized open oscillators
---------------------------------------------- : - HY,
A(t) A(t) Y (1) s
—> S > (LH) [+ A(t) Y Y Y (2)
G > 1 —> G >
G

Main Synthesis Theorem [32]. We can separate an n-dof generalized
open oscillator G into n 1-dof (i.e. xg = [ql,pl]T) generalized open oscilla-
tors Gj,7 = 1...n with a direct (nearest-neighbour only, i.e. G; only coupled
to Gj+1) interaction Hamiltonian. An illustrative example for a 2-dof gen-
eralized open oscillator is given in figure. 22.

Theorem in [32] gives forms for H*d and G_j

[32] Hendra I. Nurdin, Matthew R. James, and Andrew C. Doherty. Net-
work synthesis of linear dynamical quantum stochastic systems. STAM
Journal on Control and Optimization, 48(4):2686-2718, jan 2009.
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Summary

e Have outlined a method for realizing arbitrary quantum
optical systems with desired behaviour

* Discussed for one degree of freedom but can easily be
extended to more

e Have demonstrated this with unstable filter

e Will use this to find physical system that broadens
bandwidth of coupled cavity resonance
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Supplementary slides
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G_j and HAd

Scattering matrix —\ / — Coupling matrix

G. = (S, K T R T
J ( J J? 137 ) Free Hamiltonian

Uernal dynamics)
K. = ST«_kHK;C fork =1,....n

define Sy; for j < k+1 as Sgej = [[\_;S) = Sk Sj118; for j < k, Sgr = Sk, and

Skekr1 = Imxm, and let H® be a direct interaction Hamiltonian given by

= S o (Rl LRS- RISE D)
1=1 k=j5+1
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