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From my talk at GWADW in 2006..

9GO0 The experimental concept

= A “tabletop” interferometer to generate
squeezed light as an alternative to nonlinear
optical media and to explore radiation pressure
effects

= Relies on intrinsic quantum physics of optical
field—mechanical oscillator correlations
= Squeezing produced even when the sensitivity
is far worse than the (free mass) SQL
» Due to noise suppression of optical springs




From my talk at GWADW in 2006..
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' LIGO Outline

* Goals of experiments

» Explore radiation pressure effects
= Ponderomotive squeezing
= Optical spring / parametric instability

= Path to goals

* Phase | experiment - completed!
= See some RP effects.

» Phase Il experiment - almost completed!
= See extreme RP effects.

= Phase lll - ongoing.
= See ponderomotive squeezing.




Optomechanics at LSU

* Very light (50 ng)
microfgabricate(?mirror

* Suspended as quasi-free
mass

e Study optomechanics and
guantum noise in a system
with similar features to
GW interferometers —

— analyzer

* Micro-mirror forms one ss  sA |poy

mirror in optical cavity = 4_1 T=250ppm
. i = - PDL
* Typically operated with a Eﬂ:@@_ ==

very high optical spring -‘_ s ‘( End i
frequency (150 kHz) < ——




Prior results

Quantum radiation pressure noise measured at
room temperature in late 2017/early 2018!
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Prior results

Quantum radiation pressure noise reduced with
squeezed light! Collaboration with ANU.
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Optical spring response not removed in this plot.
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Prior results

Quantum radiation pressure noise coherently
cancelled (variational readout). Also: quantum
noise free measurement of thermal noise
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Optomechanical squeezing
experiment (3?>:(—zé<m 1)()

ap
* Goal: show that an optical cavity with a o
movable mirror produces squeezed - [rotatnoise T [Laserintensity ]
light via radiation pressure. 3 ;:5;;;::';:“:::'::_';:
* We expected gravitational wave E T """" | | commioatiel | "]
interferometers to exhibit this effect — 210 N T T T
could be exploited > e ol e e e
* Demonstrate that we understand how 3
quantum noise behaves in these systems [
* Potential new source for squeezed light 9
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The experiment

e Performed at LSU with Nancy Aggarwal (MIT)

* Challenges:
* Homodyne detection for squeezed light

* How to lock cavity while leaving (bright) squeezed beam
available for measurement?

* Understanding noise couplings
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Squeezed light!

* At frequencies below the
optical spring resonance 3.09

Quadrature, ¢ = 12.3 degrees
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| Il —— Shot noise measurement ol
;150 kHz), we expect 2.5 |§ ii:: Total measured noise Ei.:d
requency !ndependent 2.011 :iii ---- Total budgeted noise LI
squeezed light. | il —— shot noise average g:'!j
\ il ;

* Measure noise spectrum
at single quadrature to
observe squeezing.

* Limitations to squeezing:
e Optical losses
* Thermal noise i
* Feedback noise 20 30 40 50 60 70 80

e Phase noise between LO Frequency (kHz)
and squeezed beam

Total Noise w.r.t shot noise (dB)




s it really squeezed?

* Small amount of squeezing might
raise skepticism

e How well is shot noise calibrated?

* Perform independent proof of
squeezing using correlation
measurements

* Split amplitude squeezed field on
beamsplitter, and measure
correlations between two
detectors

* Shot noise limited beam: no
correlations

* Classical noise limited beam:
positive correlations

* Amplitude squeezed beam:
negative correlations

* Inferred squeezing agrees with
other measurements
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Other quadratures

Total measured Noise wrt shot noise, (dB)

* Measurements
performed at many
guadratures.

* Noise is well understood.

* Bright lines correspond
(mostly) to mechanical

¢ (Degrees)
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resonances of cantilever.

* Squeezing is very impure & o
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What are the limitations?

* Quantum noise
e Reduce losses
* Operate at smaller detuning

* Thermal noise

* Cryogenic operation
* Feedback noise

e Subtract

* Differential phase noise
(LO — squeezing)

* Keep LO in vacuum
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What if..

* We use our current
devices, but:

* Reduce losses by factor
of 10 (not too crazy)

* Operate at 10K
(demonstrated base
temperature of
cantilever with current
cryostat)

* Eliminate feedback and
LO phase noise
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...need different cantilever design for
very low frequency
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What’s next?

* Measure squeezing in double optical spring
configuration — eliminates need for feedback

* Measure ponderomotive entanglement
e Sub-SQL experiments
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Cryostat installed and connected
Just need to turn on

! Need frequency stabilization Optica| spring resonance
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Conclusions

* Operating prototype at this scale is very flexible! In one
year:

e Measured QRPN.

* J.Cripe, N. Aggarwal, R. Lanza, A. Libson, R. Singh, P. Heu, D. Follman, G. D.
Cole, N. Mavalvala & T. Corbitt, Nature 568 364-367 (2019).

 Reduced QRPN with squeezed light.

* M. J.Yap, J. Cripe, G. L. Mansell, T. G. McRae, R. L. Ward, B. J.J. Slagmolen,
D. A. Shaddock, P. Heu, D. Follman, G. D. Cole, D. E. McClelland, and T.
Corbitt, arXiv:1812.09804v1.

* Coherently cancelled QRPN.

* J.Cripe, T. Cullen, Y. Chen, P. Heu, D. Follman, G. D. Cole, and T. Corbitt,
arXiv:1812.10028v1.

* Measured ponderomotive squeezing.

* N. Aggarwal, T. Cullen, J. Cripe, G. D. Cole, R. Lanza, A. Libson, D. Follman,
P. Heu, T. Corbitt, N. Mavalvala, arXiv:1812.09942.

* If one wants to study quantum noise, it might make sense
to think about prototypes on this scale.



