Light sources and technology at 2µm

SEBASTIAN STEINLECHNER
WITH MAIK SCHRÖDER, CHRISTIAN DARSOW-FROMM, ROMAN SCHNABEL

INSTITUT FÜR LASERPHYSIK, UNIVERSITÄT HAMBURG

grant #388405737
Motivation for 2µm

- fused silica substrates lossy at low temperatures
 - Si interesting option and available in reasonable diameters
 - requires shift to $\lambda \gg 1.2\mu\text{m}$, e.g. 1.55µm
- can Si replace high-loss tantala in coatings as well?
 - much lower loss, much higher refractive index contrast requiring fewer layers
 - but absorption at 1.55µm still high, need to go further towards 2µm
Degenerate OPO for 2.128µm Generation

- Laser 2µm
- SHG 2µm/2
- Squeezer
- IFO
Degenerate OPO for 2.128µm Generation

Diagram:
- Laser 2µm
- SHG 2µm/2
- Squeezer
- IFO

Laser 1064nm
- DOPO 1064nm*2
- Squeezer
- IFO
Degenerate OPO for 2.128µm Generation

- Laser 2µm
- SHG 2µm/2
- Laser 1064nm
- DOPO 1064nm*2
- Squeezer
- IFO

Diagram with energy level transitions:
- $\hbar \omega_p$ to ω_s
- $\hbar \omega_i$ to ω_i
- 0
Setup: DOPO and two temperatures

- well-known materials such as periodically-poled KTP work for this process
- doubly-resonant linear cavity, crystal divided into two temperature regions:
 1. bulk of the periodically poled region for optimal phase-matching
 2. some small end bit to compensate round-trip phase difference between pump and signal/idler
First results: OPO Wavelength Tuning

- measured OPO output spectra for different temperatures of the nonlinear crystal
- degeneracy reached at around 70°C (higher than expected, needed some redesign of our OPO to reach those temperatures)

Temperature-dependence of signal/idler output wavelengths

Bruker Equinox 55 FT-IR Spectrometer
(picture from UWLAX, ours looks similar)
First results: OPO Wavelength Tuning

- measured OPO output spectra for different temperatures of the nonlinear crystal
- degeneracy reached at around 70°C (higher than expected, needed some redesign of our OPO to reach those temperatures)

Bruker Equinox 55 FT-IR Spectrometer (picture from UWLAX, ours looks similar)
First results: OPO Wavelength Tuning

- measured OPO output spectra for different temperatures of the nonlinear crystal
- degeneracy reached at around 70°C (higher than expected, needed some redesign of our OPO to reach those temperatures)

Bruker Equinox 55 FT-IR Spectrometer (picture from UWLAX, ours looks similar)
First results: OPO Wavelength Tuning

- measured OPO output spectra for different temperatures of the nonlinear crystal
- degeneracy reached at around 70°C (higher than expected, needed some redesign of our OPO to reach those temperatures)

Bruker Equinox 55 FT-IR Spectrometer (picture from UWLAX, ours looks similar)
First results: OPO Wavelength Tuning

- measured OPO output spectra for different temperatures of the nonlinear crystal
- degeneracy reached at around 70°C (higher than expected, needed some redesign of our OPO to reach those temperatures)

Bruker Equinox 55 FT-IR Spectrometer
(picture from UWLAX, ours looks similar)
First Results: OPO Wavelength Tuning

- Measured OPO output spectra for different temperatures of the nonlinear crystal
- Degeneracy reached at around 70°C (higher than expected, needed some redesign of our OPO to reach those temperatures)

Bruker Equinox 55 FT-IR Spectrometer (picture from UWLAX, ours looks similar)
Next Steps

- further map out optimal operating regime for DOPO
- currently setting up confocal cavity to analyse degeneracy and/or remaining frequency differences that cannot be resolved with the FT-IR
- measure easily accessible characteristics such as intensity noise, compare with Mephisto pump laser
- set up second nonlinear cavity, produce squeezing
Some Notes on Optics and Coatings
Some Notes on Optics and Coatings

- Our usual suspects (Laseroptik GmbH, ...) have little experience with low-loss coatings at 2µm
Some Notes on Optics and Coatings

- Our usual suspects (Laseroptik GmbH,...) have little experience with low-loss coatings at 2µm
- Quarter-wave stacks for 2µm obviously twice as thick as stacks for 1µm
Some Notes on Optics and Coatings

- Our usual suspects (Laseroptik GmbH, ...) have little experience with low-loss coatings at 2µm
- quarter-wave stacks for 2µm obviously twice as thick as stacks for 1µm
 - coating costs = some base value + thickness × $$$
Some Notes on Optics and Coatings

- Our usual suspects (Laseroptik GmbH, ...) have little experience with low-loss coatings at 2µm
- Quarter-wave stacks for 2µm obviously twice as thick as stacks for 1µm
 - Coating costs = some base value + thickness \times \text{\$\$}\$
 - HR2128nm+HT1064nm: “expected RoC from stress is 140m” settled for Silica+Niobia coatings which are ~30% thinner, absorption not yet measured (difficult to extract useful values b/c non-\(\lambda/4\) coating)
Some Notes on Optics and Coatings

- Our usual suspects (Laseroptik GmbH, ...) have little experience with low-loss coatings at 2µm
- quarter-wave stacks for 2µm obviously twice as thick as stacks for 1µm
 - coating costs = some base value + thickness × $\$$
 - HR2128nm+HT1064nm: “expected RoC from stress is 140m” settled for Silica+Niobia coatings which are ~30% thinner, absorption not yet measured (difficult to extract useful values b/c non-λ/4 coating)
 - HR2128nm+HR1064nm thickest coating (by ~25%) that Laseroptik ever produced on KTP, no guarantee it would adhere well
Some Notes on Optics and Coatings

- Our usual suspects (Laseroptik GmbH, ...) have little experience with low-loss coatings at 2µm
- Quarter-wave stacks for 2µm obviously twice as thick as stacks for 1µm
 - Coating costs = some base value + thickness × $$$
 - HR2128nm+HT1064nm: “expected RoC from stress is 140m” settled for Silica+Niobia coatings which are ~30% thinner, absorption not yet measured (difficult to extract useful values b/c non-λ/4 coating)
 - HR2128nm+HR1064nm thickest coating (by ~25%) that Laseroptik ever produced on KTP, no guarantee it would adhere well
- Low-OH fused silica another cost driver (Infrasil 302, Corning 7979, ...)

Photodiodes
Photodiodes

- InGaAs has cut-off at around 1.7µm
Photodiodes

- InGaAs has cut-off at around 1.7µm
- Extended InGaAs available up to ~2.6µm
 - reduced Ga, more In
 - not lattice matched to InP, leads to trapped states at dislocations, which in turn give rise to large 1/f noise and dark current
Photodiodes

- InGaAs has cut-off at around 1.7µm
- Extended InGaAs available up to ~2.6µm
 - reduced Ga, more In
 - not lattice matched to InP, leads to trapped states at dislocations, which in turn give rise to large 1/f noise and dark current
- Investigations by Joe Briggs et al. @ Glasgow, T1800491
 - characterisation of Ext-InGaAs PDs by different vendors
 - no improvement on noise for modest cooling
 - would need ~4.6µm of InGaAs for a QE of 99%, unlikely to be feasible
Example 1/f noise

- LaserComponents 2.4µm Ext-InGaAs PD, 500µm diameter
- operation with pretty much any reverse biasing leads to huge increase of 1/f noise
Example 1/f noise

- LaserComponents 2.4µm Ext-InGaAs PD, 500µm diameter
- operation with pretty much any reverse biasing leads to huge increase of 1/f noise

Other options:
- HgCdTe (MerCad)?
- InAs?
- ...?

What about quadrant PDs, bull’s eye PDs, etc?
Compensating PD Efficiency with OPA

- Idea has been around since at least Caves’ paper of 1981
- Amplify output signal + (quantum) noise to far above shot noise
- Afterwards, loss affects both signal and noise in the same way, so SNR is not affected by detection loss
- Demonstrated in Manceau et al, PhysRevLett.119.223604
Compensating PD Efficiency with OPA

- Straight-forward extension of our 2µm setup, “just” add another OPA
Some Practical Issues

- No deal-breakers here, just annoying...
- Beam-finder cards are generally thermal only
 - slow, immediately saturated, sensitivity depends on lab temperature
- cameras expensive (e.g. zinc-antimonide covers 1.5-5µm); for beam finding thermal imaging cameras can be somewhat useful
 - still slow (thermal, they don’t see 2µm directly)
 - surprisingly cheap (for low resolution) nowadays
Summary

- developments on coating thermal noise indicate that combining silicon substrates with amorphous silicon coatings could satisfy 3G requirements, but absorption dictates shift to a wavelength of around 2μm
- technological pathfinding and challenges under way for
 - lasers
 - photo detection
 - squeezing
- slow but steady progress on understanding OPO for 1064 → 2128nm
- setup will be expanded for squeezing and QE compensation